def main(device=torch.device('cuda:0')): # CLI arguments parser = arg.ArgumentParser( description='We all know what we are doing. Fighting!') parser.add_argument("--datasize", "-d", default="small", type=str, help="data size you want to use, small, medium, total") # Parsing args = parser.parse_args() # Data loaders datasize = args.datasize filename = "nyu_new.zip" pathname = f"data/{filename}" te_loader = getTestingData(datasize, pathname, batch_size=config("unet.batch_size")) # Model model = Net() model = model.to(device) # define loss function # criterion = torch.nn.L1Loss() # Attempts to restore the latest checkpoint if exists print("Loading unet...") model, start_epoch, stats = utils.restore_checkpoint( model, utils.config("unet.checkpoint")) acc, loss = utils.evaluate_model(model, te_loader, device) # axes = util.make_training_plot() print(f'Test Error:{acc}') print(f'Test Loss:{loss}')
def main(device=torch.device('cuda:0')): # CLI arguments parser = arg.ArgumentParser( description='We all know what we are doing. Fighting!') parser.add_argument("--datasize", "-d", default="small", type=str, help="data size you want to use, small, medium, total") # Parsing args = parser.parse_args() # Data loaders # TODO: ####### Enter the model selection here! ##### modelSelection = input( 'Please input the type of model to be used(res50,dense121,dense169,mob_v2,mob):' ) datasize = args.datasize filename = "nyu_new.zip" pathname = f"data/{filename}" csv = "data/nyu_csv.zip" te_loader = getTestingData(datasize, csv, pathname, batch_size=config(modelSelection + ".batch_size")) # Model if modelSelection.lower() == 'res50': model = Res50() elif modelSelection.lower() == 'dense121': model = Dense121() elif modelSelection.lower() == 'mob_v2': model = Mob_v2() elif modelSelection.lower() == 'dense169': model = Dense169() elif modelSelection.lower() == 'mob': model = Net() elif modelSelection.lower() == 'squeeze': model = Squeeze() else: assert False, 'Wrong type of model selection string!' model = model.to(device) # define loss function # criterion = torch.nn.L1Loss() # Attempts to restore the latest checkpoint if exists print(f"Loading {mdoelSelection}...") model, start_epoch, stats = utils.restore_checkpoint( model, utils.config(modelSelection + ".checkpoint")) acc, loss = utils.evaluate_model(model, te_loader, device, test=True) # axes = util.make_training_plot() print(f'Test Error:{acc}') print(f'Test Loss:{loss}')