def main(device=torch.device('cuda:0')):
    # CLI arguments
    parser = arg.ArgumentParser(
        description='We all know what we are doing. Fighting!')
    parser.add_argument("--datasize",
                        "-d",
                        default="small",
                        type=str,
                        help="data size you want to use, small, medium, total")
    # Parsing
    args = parser.parse_args()
    # Data loaders
    datasize = args.datasize
    filename = "nyu_new.zip"
    pathname = f"data/{filename}"
    te_loader = getTestingData(datasize,
                               pathname,
                               batch_size=config("unet.batch_size"))

    # Model
    model = Net()
    model = model.to(device)

    # define loss function
    # criterion = torch.nn.L1Loss()

    # Attempts to restore the latest checkpoint if exists
    print("Loading unet...")
    model, start_epoch, stats = utils.restore_checkpoint(
        model, utils.config("unet.checkpoint"))
    acc, loss = utils.evaluate_model(model, te_loader, device)
    # axes = util.make_training_plot()
    print(f'Test Error:{acc}')
    print(f'Test Loss:{loss}')
Exemple #2
0
def main(device=torch.device('cuda:0')):
    # CLI arguments
    parser = arg.ArgumentParser(
        description='We all know what we are doing. Fighting!')
    parser.add_argument("--datasize",
                        "-d",
                        default="small",
                        type=str,
                        help="data size you want to use, small, medium, total")
    # Parsing
    args = parser.parse_args()
    # Data loaders

    # TODO:
    ####### Enter the model selection here! #####
    modelSelection = input(
        'Please input the type of model to be used(res50,dense121,dense169,mob_v2,mob):'
    )

    datasize = args.datasize
    filename = "nyu_new.zip"
    pathname = f"data/{filename}"
    csv = "data/nyu_csv.zip"
    te_loader = getTestingData(datasize,
                               csv,
                               pathname,
                               batch_size=config(modelSelection +
                                                 ".batch_size"))

    # Model
    if modelSelection.lower() == 'res50':
        model = Res50()
    elif modelSelection.lower() == 'dense121':
        model = Dense121()
    elif modelSelection.lower() == 'mob_v2':
        model = Mob_v2()
    elif modelSelection.lower() == 'dense169':
        model = Dense169()
    elif modelSelection.lower() == 'mob':
        model = Net()
    elif modelSelection.lower() == 'squeeze':
        model = Squeeze()
    else:
        assert False, 'Wrong type of model selection string!'
    model = model.to(device)

    # define loss function
    # criterion = torch.nn.L1Loss()

    # Attempts to restore the latest checkpoint if exists
    print(f"Loading {mdoelSelection}...")
    model, start_epoch, stats = utils.restore_checkpoint(
        model, utils.config(modelSelection + ".checkpoint"))
    acc, loss = utils.evaluate_model(model, te_loader, device, test=True)
    # axes = util.make_training_plot()
    print(f'Test Error:{acc}')
    print(f'Test Loss:{loss}')