Exemple #1
0
def testing(prefix, classifier):
    feature, label, name = data.get_matrix('test', False)
    predict = classifier.predict(feature)
    res_file = open(prefix + '.txt', 'w')
    res_file.write(str(classifier.score(feature, label) * 100.0) + '\n')
    for i in xrange(4):
        res_file.write(' '.join(map(str, (np.logical_and(label == i, predict == j).sum() for j in xrange(4)))) + '\n')
    res_file.write('predict label name\n')
    for x in zip(predict, label, name):
        res_file.write(' '.join(map(str, x)) + '\n')
    res_file.close()
Exemple #2
0
def training(model_name):
    feature, label, _ = data.get_matrix('train', True)
    classifier = model.get_model(model_name)
    classifier.fit(feature, label)
    return classifier
Exemple #3
0
def run():
    group, name, index = parse_argv()
    np_matrix = data.get_matrix(group, name, index)
    matrix.run_operations_on_matrix(np_matrix)
Exemple #4
0
from sklearn import manifold
import torch.nn.functional as F
import matplotlib.lines as mlines
import pandas as pd
import umap

import sys
#sys.path.append('../dataset')
#import graph_similarity_matrix as gsm
import data as mdata

#dpath1='/Users/iqbal/multiview3d/dataset_3D/clusters_dataset/dist_2.csv'
dpath1 = '/Users/iqbal/multiview3d/dataset_3D/123_dataset_new/250/data_mat_1_250.csv'
#dpath1='/Users/iqbal/multiview3d/dataset_3D/sq_cir_tr_dataset/350/data_mat_sq_350.csv'

D1 = mdata.get_matrix(dpath1)

#for i in range(1, 30):
#    for j in range(1 )
pr = 20
ex = 12
lr = 1

filename = "input_squire_perplexity_" + str(pr)
#tsne = manifold.TSNE(n_components=3,perplexity=10.0, early_exaggeration=12.0, learning_rate=200.0, n_iter=1000, n_iter_without_progress=300, min_grad_norm=1e-07, metric='euclidean', init='random', verbose=1, random_state=None, method='barnes_hut', angle=0.5)

tsne = manifold.TSNE(n_components=2,
                     perplexity=pr,
                     early_exaggeration=ex,
                     learning_rate=lr,
                     n_iter=1000,
Exemple #5
0
    plt.savefig('precision_ml100k.png')
    plt.show()


if __name__ == '__main__':
    # # ml100k的数据
    # nb_user=943
    # nb_item=1682
    # top_k = 5
    # train_set_dict, test_set_dict = read_ml100k('dataset/ml-100k/u1.base', 'dataset/ml-100k/u1.test', sep='\t', header=None)
    # train_set, test_set = get_matrix(train_set_dict, test_set_dict, nb_user=nb_user, nb_item=nb_item)
    # train_CFGAN(train_set, nb_item, epoches=300, batch_size=32, nb_zr=128, nb_pm=128, alpha=0.1, test_set_dict=test_set_dict, top_k=top_k)

    # ml1m的数据,超参数与ml100k不一样
    nb_user = 6040
    nb_item = 3952
    top_k = 5
    train_set_dict, test_set_dict = read_ml1m('dataset/ml-1m/ratings.dat')
    train_set, test_set = get_matrix(train_set_dict,
                                     test_set_dict,
                                     nb_user=nb_user,
                                     nb_item=nb_item)
    train_CFGAN(train_set,
                nb_item,
                epoches=2000,
                batch_size=128,
                nb_zr=512,
                nb_pm=512,
                alpha=1,
                test_set_dict=test_set_dict,
                top_k=top_k)
Exemple #6
0
            diff = np.sum(np.square(vi - vj))
            d = 0 if diff < eps else np.sqrt(diff)
            cost = cost + np.square(d -
                                    W[i][j]) if abs(d -
                                                    W[i][j]) > eps else cost
        return cost


#dotpath='../dataset/game_of_thrones_consistent.dot'
#M,  G, nodes_index=gsm.get_similarity_matrix(dotpath)

#X=np.zeros((6,2))
#X=np.random.rand(6,2)

#D1, D2, D3=data()
D1 = mdata.get_matrix('../dataset/dist_1.csv')
D2 = mdata.get_matrix('../dataset/dist_2.csv')
#D3=mdata.get_matrix('../dataset/dist_2.csv')
D3 = np.zeros((len(D1), len(D1)))

A = np.random.rand(len(D1) * dim, 1)
#B=A.copy()
#print(A)
pos1 = multiview_autograd(alpha, A, steps, dim, stopping_eps)
#pos2=mds_sklearn(alpha,A,steps,dim)

pos1 = pos1.reshape(int(len(pos1) / dim), dim)
#pos2=pos2.reshape(int(len(ZZ)/dim),dim)

fig = plt.figure()
ax = plt.axes(projection='3d')
Exemple #7
0
# Updated for python3
# CS 251 Project 6
#
# PCA test function
#
import numpy as np
import data
import analysis
import sys

if __name__ == "__main__":
    if len(sys.argv) < 2:
        print('Usage: python %s <data file>' % (sys.argv[0]))
        exit()

    data = data.Data(sys.argv[1])
    pcadata = analysis.pca(data, data.get_headers(), False)

    print("\nOriginal Data Headers")
    print(pcadata.get_original_headers())
    print("\nOriginal Data")
    print(data.get_matrix(data.get_headers()))
    print("\nOriginal Data Means")
    print(pcadata.get_original_means())
    print("\nEigenvalues")
    print(pcadata.get_eigenvalues())
    print("\nEigenvectors")
    print(pcadata.get_eigenvectors())
    print("\nProjected Data")
    print(pcadata.get_matrix(pcadata.get_headers()))
Exemple #8
0
            else:
                d = np.sqrt(diff)
            #print("diss",d)
            if abs(d - M[i][j]) > eps:
                cost = cost + np.square(d - M[i][j])
            #dis[j][i]=dis[i][j]
    #dis = euclidean_distances(X)
    #cost1=np.square(dis-M)
    #cost=np.sum(cost1)
    return cost


#dotpath='../dataset/game_of_thrones_consistent.dot'
#M,  G, nodes_index=gsm.get_similarity_matrix(dotpath)

M = mdata.get_matrix('../dataset/dist_2.csv')
M = M[0:29, 0:29]
print(M.shape)
#X=np.zeros((6,2))
#X=np.random.rand(6,2)

#M=data()

A = np.random.rand(len(M) * dim, 1)
#B=A.copy()
#print(A)
ZZ = mds_autograd(alpha, A, M, steps, dim)

Z = mds_sklearn(alpha, A, M, steps, dim)

fig = plt.figure()
if len(sys.argv) != 8:
    print(
        "uses: multiview_distance_matrix.py nameofdataset datapath1 datapath2 datapath3 learning_rate maxsteps"
    )
    sys.exit()

name_data_set = sys.argv[1]
dpath1 = sys.argv[2]
dpath2 = sys.argv[3]
dpath3 = sys.argv[4]

alpha = float(sys.argv[5])
steps = int(sys.argv[6])
outputpath = sys.argv[7]

D1 = mdata.get_matrix(dpath1)
D2 = mdata.get_matrix(dpath2)
D3 = mdata.get_matrix(dpath3)
#D1=D1[0:10,0:10]
#D2=D2[0:10,0:10]
#D3=D3[0:10,0:10]

P1 = np.random.rand(4, 1)
P2 = np.random.rand(4, 1)
P3 = np.random.rand(4, 1)

print("number of data points", len(D1))
A = np.random.rand(len(D1) * dim, 1)

mview = multiview(D1, D2, D3, dim, eps)
pos1, costs, P1, P2, P3 = mview.multiview_mds_projection(