def bot():
    name = input('Enter your name here : ')
    greeting(name)
    introduction()
    input_data()
    print('Do you want to know about something else..',
          '1.YES',
          '2.NO',
          sep='\n')
    choice = int(input('Enter your choice : '))
    while choice == 1:
        input_data()
        print('Do you want to know about something else..',
              '1.YES',
              '2.NO',
              sep='\n')
        choice = int(input('Enter your choice : '))
    if choice == 2:
        print('Hope this is useful',
              'Thankyou for coming here ..🤗🤗',
              sep='\n')
Exemple #2
0
	def __init__(self, args):
		super(Model_Run, self).__init__()
		for k, v in vars(args).items(): setattr(self, k, v)

		self.args = args
		self.data_generator = input_data(args)

		p_content = self.data_generator.p_content
		word_embed = self.data_generator.word_embed

		self.model = SHNE_Encoder(args, p_content, word_embed)

		# run with GPU
		if self.args.cuda:
			self.model.cuda()

		# setting optimizer
		self.parameters = filter(lambda p: p.requires_grad, self.model.parameters())
		self.optim = optim.Adam(self.parameters, lr=self.lr, weight_decay=0.0)
    def __initData(self, file_number):

        inp = data.input_data()

        #Read files
        with open(inp[self.file_number] + ".kp") as level_file:
            rows = level_file.read().split('\n')

        print(rows[0])

        number_of_items = (int)(rows[1])
        self.items = []
        self.file_name = inp[self.file_number - 1]

        for i in range(4, number_of_items + 5 - 1):
            x = rows[i].split(" ")[0]
            y = rows[i].split(" ")[1]
            self.items.append(((int)(x), (int)(y)))

        self.maxCapacity = (int)(rows[2])
Exemple #4
0
parser.add_argument(
    '--data-valid',
    default="/home/hemant/net/easy_net/data/val/",
    help=
    'enter the directory where the validation data of different classes is saved'
)
parser.add_argument(
    '--data-train',
    default="/home/hemant/net/easy_net/data/train/",
    help=
    'enter the directory where the train data of different classes is saved')
parser.add_argument("--pll", action='store_true', help='use multi-gpu or no')
parser.add_argument("--weights", action='store_true', help='use weights or no')
args = parser.parse_args()

input_train = input_data(root_dir=args.data_train, type="train")
train_dl = DataLoader(input_train,
                      batch_size=args.batch_size,
                      shuffle=True,
                      num_workers=4)
input_valid = input_data(root_dir=args.data_valid, type="valid")
valid_dl = DataLoader(input_valid,
                      batch_size=args.batch_size * 2,
                      shuffle=False,
                      num_workers=4)

if __name__ == '__main__':

    model = nn.Sequential(feature_b(), feature_r(),
                          decision(out_classes=input_train[0][3]))
Exemple #5
0
sess = tf.Session(config=config)

#Placeholder
x1 = tf.placeholder(tf.float32, [batch_size, Height, Width, Channel])
x2 = tf.placeholder(tf.float32, [batch_size, Height, Width, Channel])
x3 = tf.placeholder(tf.float32, [batch_size, Height, Width, Channel])

## MC-subnet
x1to2 = flow.warp_img(batch_size, x2, x1, False)
x3to2 = flow.warp_img(batch_size, x2, x3, True)

## QE-subnet
x2_enhanced = net.network(x1to2, x2, x3to2)

##Import data
PQF_Frame_93_Y, PQF_Frame_93_U, PQF_Frame_93_V = data.input_data(
    Height, Width, 'Frame_93')
non_PQF_Frame_96_Y, non_PQF_Frame_96_U, non_PQF_Frame_96_V = data.input_data(
    Height, Width, 'Frame_96')
PQF_Frame_97_Y, PQF_Frame_97_U, PQF_Frame_97_V = data.input_data(
    Height, Width, 'Frame_97')

##Load model
saver = tf.train.Saver()
saver.restore(sess, './HEVC_QP37_model/model.ckpt')

##Run test
Enhanced_Y = sess.run(x2_enhanced,
                      feed_dict={
                          x1: PQF_Frame_93_Y[0:1, 0:Height, 0:Width, 0:1],
                          x2: non_PQF_Frame_96_Y[0:1, 0:Height, 0:Width, 0:1],
                          x3: PQF_Frame_97_Y[0:1, 0:Height, 0:Width, 0:1]
Exemple #6
0
def main():
	#from 1 to 12
	# print('Input folder to run (1->13): ', end = '')
	# folder_to_run = int(input())

	inp = data.input_data()
	
	
	check_point = 28

	# for name in range((folder_to_run - 1)*8, (folder_to_run - 1)*8 + 8):
	for name in range(check_point, len(inp)):
		#Declare time
		start = time.time()
		elapsed = 0
		print('File name: ' + inp[name])
		print('Package number: ' + str(name))
		with open(inp[name] + ".kp") as level_file:
			rows = level_file.read().split('\n')
		
		number_items = (int)(rows[1])
		capacities = [(int)(rows[2])]
		values = []
		weights = [[]]
		for i in range(4, number_items + 5 - 1):
			x = rows[i].split(" ")[0]
			y = rows[i].split(" ")[1]
			values.append((int)(x))
			weights[0].append((int)(y))
			

		solver = pywrapknapsack_solver.KnapsackSolver(
			pywrapknapsack_solver.KnapsackSolver.KNAPSACK_MULTIDIMENSION_BRANCH_AND_BOUND_SOLVER, 'KnapsackExample')


		#Set time limit - seconds
		#3 minutes -> 180 seconds
		solver.set_time_limit(180)

		solver.Init(values, weights, capacities)
		computed_value = solver.Solve()

		packed_items = []
		packed_weights = []
		total_weight = 0
		for i in range(len(values)):
			if solver.BestSolutionContains(i):
				packed_items.append(i)	
				packed_weights.append(weights[0][i])
				total_weight += weights[0][i]

		elapsed = time.time() - start

		# print("Capacity = {}\nTotal weight = {} \nTotal value = {} \nNumber of items: {} \n " \
		# 					.format(capacities[0], total_weight, computed_value, len(packed_items)))

		with open("output/Google-OR-Tools/" + "test " + str(name) + ".txt", 'w+') as solver_file:
			solver_file.write('File name: {}.kp\nExecution time: {} sec\nCapacity = {} \nTotal weight = {} \nTotal value = {} \nNumber of items: {} \n' \
							.format(inp[name], elapsed, capacities[0], total_weight, computed_value, len(packed_items)))
			# solver_file.write('Execution time: {} sec\n'.format(elapsed))
			# solver_file.write('Capacity = {} \n'.format(str(capacities[0])))
			# solver_file.write('Total weight = {} \n'.format(str(total_weight)))
			# solver_file.write('Total value = {} \n'.format(computed_value))
			# solver_file.write('Number of items: {} \n'.format(str(len(packed_items))))
			# solver_file.write('Packed items: {} \n'.format(packed_items))
			# solver_file.write('Packed weights: {}'.format(len(packed_items)))

		print('Execution time: ' + str(elapsed))

		# print('Capacity = ' + str(capacities[0]))
		# print('Total weight = ' + str(total_weight))
		# print('Number of items: ' + str(len(packed_items)))
		# print('Packed items:', packed_items)
		# print('Packed_weights:', packed_weights)
		print()