def normalize_columns_together( headers,d ): #normalizes all the data so the min maps to 0 and the max maps to 1 data = d.get_data(headers) if data.size > 0: norm = data - data.min() if data.max() != 0: norm = norm/data.max() return norm
def highlight_max(data, color='#0e5c99'): ''' highlight the maximum in a Series or DataFrame ''' attr = 'background-color: {}'.format(color) if data.ndim == 1: # Series from .apply(axis=0) or axis=1 is_max = data == data.max() return [attr if v else '' for v in is_max] else: # from .apply(axis=None) is_max = data == data.max().max() return pd.DataFrame(np.where(is_max, attr, ''), index=data.index, columns=data.columns)
def visualize_data(data, padsize=1, padval=0, cmap="gray", image_size=(10, 10)): data -= data.min() data /= data.max() # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n**2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0), ) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose( (0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) #plt.figure(figsize=image_size) plt.imshow(data, cmap=cmap) plt.show() plt.axis('off')
def generateDataImage(data,metadata,imgname): fig = plt.figure(figsize=(8,4)) ax = fig.add_subplot(121) ax.imshow(data,origin='lower',cmap=cm.jet) ax2 = fig.add_subplot(122) vmax = data.max() if vmax < 1: vmax=1 ax2.imshow(data,origin='lower',cmap=cm.jet,norm=LogNorm(vmin=1, vmax=vmax)) #plt.colorbar(data,ax=ax2,norm=LogNorm(vmin=1)) fig.savefig(imgname)
def draw_img_rgb(data): size = 96 n = data.shape[0] plt.figure(figsize=(n*2, 2)) data /= data.max() cnt = 1 for idx in np.arange(n): plt.subplot(1, n, cnt) tmp = data[idx,:,:,:].transpose(1,2,0) plt.imshow(tmp) plt.tick_params(labelbottom="off") plt.tick_params(labelleft="off") cnt+=1 plt.show()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--epoch', type=int, default=200, help='# of Epochs') parser.add_argument('--learn', type=float, default=1e-1, help='learning rate') parser.add_argument('--photo', type=int, default=1, help='photo index') FLAGS = parser.parse_args() NEpochs = FLAGS.epoch learningRate = FLAGS.learn x = tf.Variable(tf.zeros([1, imageSize], dtype=tf.float32)) y = FLAGS.photo w = tf.placeholder(tf.float32, shape=(imageSize, NClasses)) b = tf.placeholder(tf.float32, shape=(NClasses)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) new_saver = tf.train.import_meta_graph(model_dir + 'model.meta') new_saver.restore(sess, tf.train.latest_checkpoint(model_dir)) graph = tf.get_default_graph() weights = sess.run(graph.get_tensor_by_name("weights:0")) biases = sess.run(graph.get_tensor_by_name("biases:0")) prediction = tf.nn.softmax(tf.matmul(x, w) + b) loss = 1 - prediction[0][y] optimizer = tf.train.GradientDescentOptimizer(learningRate).minimize( loss) for epoch in range(NEpochs): _, l = sess.run([optimizer, loss], feed_dict={ w: weights, b: biases }) print("Epoch: %01d loss: %.4f" % (epoch + 1, l)) data = np.asarray(sess.run(x), dtype = np.float32).\ reshape([-1, imageHeight, imageWidth])[0] data_rescaled = (255.0 / data.max() * data).astype(np.uint8) plt.imshow(np.asarray(sess.run(x)).reshape( [-1, imageHeight, imageWidth])[0], cmap='gray') # plt.savefig('inversion/test_'+str(y)+'.png') plt.savefig('/home/ubuntu/test_' + str(y) + '.png')
def visualize_data(data, padsize=1, padval=0, cmap="gray", image_size=(10,10)): data -= data.min() data /= data.max() # force the number of filters to be square n = int(np.ceil(np.sqrt(data.shape[0]))) padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3) data = np.pad(data, padding, mode='constant', constant_values=(padval, padval)) # tile the filters into an image data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1))) data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:]) #plt.figure(figsize=image_size) plt.imshow(data, cmap=cmap) plt.show() plt.axis('off')