def create ( cls, p_opcode, p_args ): #---------------------------------------------------------------------- l_format = opcodes.result_format(p_opcode) if l_format == None: return None l_data = data.pack(l_format, p_args) if l_data == None: return None return cls(p_opcode, l_data)
def create ( cls, p_opcode, p_args, p_timeout = 0.0, p_guid = None ): #---------------------------------------------------------------------- l_format = opcodes.command_format(p_opcode) if l_format == None: return None l_data = data.pack(l_format, p_args) if l_data == None: return None l_command = cls(p_opcode, l_data) l_command.set_timeout(p_timeout) l_command.set_guid(p_guid) return l_command
sess.run(tf.global_variables_initializer()) # tensor board merged = tf.summary.merge_all() writer = tf.summary.FileWriter(log_path + '/', sess.graph) logging.info('Model builded, %s used\n' % time_format(time.time() - tic0)) test_feed_dicts = [] for i in xrange((len(dataset_u.test_x) + args.batch_size_u - 1) // args.batch_size_u): x, y, l, msl = data.pack( dataset_u.test_x[i * args.batch_size_u:(i + 1) * args.batch_size_u], dataset_u.test_y[i * args.batch_size_u:(i + 1) * args.batch_size_u]) test_feed_dicts.append({ x_u_: x, seq_len_u_: l, y_u_: y, msl_u_: msl, keep_prob_: 1 }) train_s_feed_dicts = [] for i in xrange((len(dataset_s.train_x) + args.batch_size_s - 1) // args.batch_size_s): x, y, l, msl = data.pack( dataset_s.train_x[i * args.batch_size_s:(i + 1) *
config = tf.ConfigProto() config.gpu_options.allow_growth = True sess = tf.Session(config=config) init = tf.initialize_all_variables() sess.run(init) logging.info('Model builded, %s used\n' % time_format(time.time() - tic0)) if not args.quiet: print('Model builded, %s used\n' % time_format(time.time() - tic0)) # pre-store test dataset feed_dicts test_feed_dicts = [] for i in xrange((len(dataset.test_x)+args.batch_size-1) // args.batch_size): x, y, l, msl = data.pack( dataset.test_x[i*args.batch_size:(i+1)*args.batch_size], dataset.test_y[i*args.batch_size:(i+1)*args.batch_size], args.window_size) test_feed_dicts.append({x_:x, seq_len_:l, y_:y, msl_:msl, keep_prob_:1.}) for epoch in xrange(1, args.n_epochs+1): tic = time.time() loss = 0. n_train = dataset.n_train n_trained = 0 for idxs in dataset.minibatches: x, y, l, msl = dataset.next_batch() _, c = sess.run([train_op, loss_], feed_dict={x_:x, seq_len_:l, y_:y, msl_:msl, keep_prob_:args.keep_prob}) if np.isnan(c): logging.error('Gradient Explosion!') print('Gradient Explosion!') exit()