Exemple #1
0
# ========================  构建输入 ========================
# 配置tfrecord的数据结构格式

name2features = {}
for f in sparse_features:
    name2features[f] = tf.io.FixedLenFeature([], tf.int64)
for f in dense_features:
    name2features[f] = tf.io.FixedLenFeature([], tf.float32)
for f in [args.target]:
    name2features[f] = tf.io.FixedLenFeature([], tf.float32)

if args.mode == 'train':
    train_input_fn = tfrecord2fn(os.path.join(args.tfrecord_dir,
                                              'train.tfrecord'),
                                 name2features,
                                 args.batch_size,
                                 args.num_epoches,
                                 drop_remainder=True,
                                 mode=tf.estimator.ModeKeys.TRAIN,
                                 target=args.target)
elif args.mode == 'eval':
    eval_input_fn = tfrecord2fn(os.path.join(args.tfrecord_dir,
                                             'eval.tfrecord'),
                                name2features,
                                args.batch_size,
                                args.num_epoches,
                                drop_remainder=True,
                                mode=tf.estimator.ModeKeys.EVAL,
                                target=args.target)
elif args.mode == 'train_eval':
    train_input_fn = tfrecord2fn(os.path.join(args.tfrecord_dir,
                                              'train.tfrecord'),
Exemple #2
0
    "cp": tf.FixedLenFeature([], tf.int64),
    "trestbps": tf.FixedLenFeature([], tf.int64),
    "chol": tf.FixedLenFeature([], tf.int64),
    "fbs": tf.FixedLenFeature([], tf.int64),    
    "restecg": tf.FixedLenFeature([], tf.int64),    
    "thalach": tf.FixedLenFeature([], tf.int64),    
    "exang": tf.FixedLenFeature([], tf.int64),    
    "oldpeak": tf.FixedLenFeature([], tf.int64),    
    "slope": tf.FixedLenFeature([], tf.int64),    
    "ca": tf.FixedLenFeature([], tf.int64),    
    "thal": tf.FixedLenFeature([], tf.int64),    
    "target": tf.FixedLenFeature([], tf.float32),    
}
													
if split:
    train_input_fn = tfrecord2fn('heart.tfrecord.train', name2features, batch_size, num_epochs,drop_remainder=True, is_training=True, target='target')
    eval_input_fn = tfrecord2fn('heart.tfrecord.eval', name2features, batch_size, num_epochs, drop_remainder=True, is_training=True, target='target')

else:
    train_input_fn = tfrecord2fn('heart.tfrecord', name2features, batch_size, num_epochs,drop_remainder=True, is_training=True, target='target')
    eval_input_fn = tfrecord2fn('heart.tfrecord', name2features, batch_size, num_epochs, drop_remainder=True, is_training=True, target='target')
    test_input_fn = tfrecord2fn('heart.tfrecord', name2features, batch_size, num_epochs, drop_remainder=True, is_training=False)

# ========================  进行训练 ========================
early_stopping_hook = tf.estimator.experimental.stop_if_no_decrease_hook(
    estimator=estimator,
    metric_name='eval_loss',
    max_steps_without_decrease=1000,
    min_steps=10,
    run_every_secs=None,
    run_every_steps=1000