Exemple #1
0
    data = HeteData(dataset=dataset, train_percent=train_percent, shuffle=shuffle)
    graph_list = data.get_dict_of_list()
    homo_graph = nx.to_dict_of_lists(data.homo_graph)
    input_dim = data.x.shape[1]

    pre_embed_dim = data.type_num * info_section
    output_dim = max(data.train_list[:, 1].tolist()) + 1  # 隐藏单元节点数  两层

    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"  # 获取预处理数据

    assert select_method in ["end_node", "all_node"]

    x = data.x
    train_list = data.train_list  # 训练节点/数据对应的标签
    test_list = data.test_list  # 测试节点/数据对应的索引
    val_list = data.val_list  # 验证节点/数据对应的索引
    criterion = nn.CrossEntropyLoss().to(DEVICE)

    num_thread = 12
    pool = ThreadPool(num_thread)

    # 此处枚举metapath并初始化选择模型
    metapath_name = mp.enum_metapath_name(data.get_metapath_name(), data.get_metapath_dict(), metapath_length)
    metapath_list = mp.enum_longest_metapath_index(data.get_metapath_name(), data.get_metapath_dict(), metapath_length)

    select_model = GraphMSE(metapath_list=metapath_name, input_dim=input_dim, pre_embed_dim=pre_embed_dim,
                            select_dim=output_dim, mlp_settings=mlp_settings).to(DEVICE)
    train(model=select_model, epochs=100, method="all_node", ablation=ablation)
    # test(model=select_model, test_method="final")
    test(model=select_model, test_method="best_val")
Exemple #2
0
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"  # 获取预处理数据

    assert select_method in ["end_node", "all_node"]

    x = data.x
    train_list = data.train_list  # 训练节点/数据对应的标签
    test_list = data.test_list  # 测试节点/数据对应的索引
    val_list = data.val_list  # 验证节点/数据对应的索引
    criterion = nn.CrossEntropyLoss().to(DEVICE)

    num_thread = 12
    pool = ThreadPool(num_thread)

    # 此处枚举metapath并初始化选择模型
    metapath_name = mp.enum_metapath_name(data.get_metapath_name(),
                                          data.get_metapath_dict(),
                                          metapath_length)
    metapath_list = mp.enum_longest_metapath_index(data.get_metapath_name(),
                                                   data.get_metapath_dict(),
                                                   metapath_length)

    select_model = GraphMSE(metapath_list=metapath_name,
                            input_dim=input_dim,
                            pre_embed_dim=pre_embed_dim,
                            select_dim=output_dim,
                            mlp_settings=mlp_settings,
                            endnode_test=True).to(DEVICE)
    train(model=select_model, epochs=100, method="end_node", ablation=ablation)
    test(model=select_model, test_method="best_val")