tf.sg_arg_def(frac=(1.0, "test fraction ratio to whole data set. The default is 1.0(=whole set)"))


#
# hyper parameters
#

# batch size
batch_size = 16

#
# inputs
#

# corpus input tensor ( with QueueRunner )
data = SpeechCorpus(batch_size=batch_size, set_name=tf.sg_arg().set)

# mfcc feature of audio
x = data.mfcc
# target sentence label
y = data.label

# sequence length except zero-padding
seq_len = tf.not_equal(x.sg_sum(axis=2), 0.).sg_int().sg_sum(axis=1)

#
# Testing Graph
#

# encode audio feature
logit = get_logit(x, voca_size=voca_size)
# set log level to debug
tf.sg_verbosity(10)

#
# hyper parameters
#

batch_size = 16  # total batch size

#
# inputs
#

# corpus input tensor
data = SpeechCorpus(batch_size=batch_size * tf.sg_gpus())

# mfcc feature of audio
inputs = tf.split(data.mfcc, tf.sg_gpus(), axis=0)
# target sentence label
labels = tf.split(data.label, tf.sg_gpus(), axis=0)

# sequence length except zero-padding
seq_len = []
for input_ in inputs:
    seq_len.append(
        tf.not_equal(input_.sg_sum(axis=2), 0.).sg_int().sg_sum(axis=1))


# parallel loss tower
@tf.sg_parallel