selectColumns, selectTime, ) from sklearn.preprocessing import MinMaxScaler # Getting data input = open("../data/preprocessed/preprocessedDataParticipant1.txt", "rb") data = pickle.load(input) input.close() # Removing "steps" caused by scooter riding data["steps"] = data["steps"] - 37 * data["scooterRiding"] data["steps"][data["steps"] < 0] = 0 # Selecting the different periods where different trackers where used period1 = selectTime(data, "2015-12-26", "2016-06-21") # basis and googlefit period2 = selectTime(data, "2016-06-22", "2016-09-01") # basis period3 = selectTime(data, "2016-09-02", "2017-01-01") # basis and fitbit period4 = selectTime(data, "2017-01-02", "2017-10-16") # fitbit period5 = selectTime(data, "2017-10-17", "2018-07-02") # fitbit and moves period6 = selectTime(data, "2018-07-03", "2018-07-30") # fitbit and moves and googlefit period7 = selectTime(data, "2018-07-31", "2020-02-01") # fitbit and googlefit # Creating the trackerMeanSteps variable in the dataframe and puts harmonized steps value inside data["trackerMeanSteps"] = data["steps"] data = adjustVarAndPlaceInData(period1, data, "googlefitSteps", "basisPeakSteps", "2015-12-26", "2016-06-21") data = addDataToTrackerMeanSteps(period2, data, "basisPeakSteps", "2016-06-22", "2016-09-01") data = adjustVarAndPlaceInData(period3, data, "basisPeakSteps", "steps",
# This scripts assumes that the dataframe has been created and saved in data.txt import pickle import matplotlib.pyplot as plt import pandas as pd from sklearn.preprocessing import MinMaxScaler import numpy as np from dataFrameUtilities import selectTime, selectColumns, addRollingMeanColumns input = open('data.txt', 'rb') data = pickle.load(input) input.close() timeSelected = selectTime(data, '2016-01-15', '2019-03-06') pain = selectColumns(timeSelected, ['forearmElbowPain']) pain = addRollingMeanColumns(pain, ['forearmElbowPain'], 21) timeSelected[ 'swimAndSurf'] = timeSelected['swimming'] + timeSelected['surfing'] timeSelected['climbs'] = timeSelected['climbing'] + timeSelected['viaFerrata'] env = addRollingMeanColumns(timeSelected, ['whatPulseT', 'swimAndSurf', 'climbs'], 21) envOrdi = env[['whatPulseT']] envSport = env[['swimAndSurf', 'climbs']] envSportMean = env[[ 'whatPulseTRollingMean', 'swimAndSurfRollingMean', 'climbsRollingMean' ]]
# This scripts assumes that the dataframe has been created and saved in data.txt import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd from dataFrameUtilities import addRollingMeanColumns, selectColumns, selectTime from sklearn.preprocessing import MinMaxScaler input = open("data.txt", "rb") data = pickle.load(input) input.close() timeSelected = selectTime(data, "2016-01-15", "2019-03-06") pain = selectColumns(timeSelected, ["forearmElbowPain"]) pain = addRollingMeanColumns(pain, ["forearmElbowPain"], 21) timeSelected[ "swimAndSurf"] = timeSelected["swimming"] + timeSelected["surfing"] timeSelected["climbs"] = timeSelected["climbing"] + timeSelected["viaFerrata"] env = addRollingMeanColumns(timeSelected, ["whatPulseT", "swimAndSurf", "climbs"], 21) envOrdi = env[["whatPulseT"]] envSport = env[["swimAndSurf", "climbs"]] envSportMean = env[[ "whatPulseTRollingMean", "swimAndSurfRollingMean", "climbsRollingMean" ]]
# This scripts assumes that the dataframe has been created and saved in data.txt import pickle import matplotlib.pyplot as plt import numpy as np import pandas as pd from dataFrameUtilities import addRollingMeanColumns, selectColumns, selectTime input = open("data.txt", "rb") data = pickle.load(input) input.close() timeSelected = selectTime(data, "2016-09-01", "2019-10-20") pain = selectColumns(timeSelected, ["kneePain"]) pain = addRollingMeanColumns(pain, ["kneePain"], 21) env = addRollingMeanColumns(timeSelected, ["steps", "denivelation"], 21) envRollingMean = selectColumns(env, ["stepsRollingMean", "denivelationRollingMean"]) envBrut = selectColumns(env, ["steps", "denivelation"]) fig, axes = plt.subplots(nrows=3, ncols=1) pain.plot(ax=axes[0]) envBrut.plot(ax=axes[1]) envRollingMean.plot(ax=axes[2]) plt.legend(loc="best") plt.show()