""" import dataOp import metrics import customLayers as cl import helperFunctions as hf import numpy as np import pandas as pd import tensorflow as tf from tqdm import tqdm from tensorflow.keras import layers, models, losses import matplotlib.pyplot as plt dVal = dataOp.data_loader("C:/Datasets/MRI_Data/Recon_v4/Val", 8, 4, 10, False) dTrain = dataOp.data_loader("C:/Datasets/MRI_Data/Recon_v4/Train", 8, 4, 10, False) dL = dataOp.data_loader("C:/Datasets/MRI_Data/Recon_v4/Val", 1, 4, 10, False) d = dL.__getitem__(200) dIn = layers.Input(shape=(256, 256, 2)) mIn = layers.Input(shape=(256, 256, 2)) mul = cl.mulBlock()([dIn, mIn]) # Dumbell Image Domain ifft = cl.ifftBlock()(mul) dumbell = cl.dumbellXL()(ifft) fft = cl.fftBlock()(dumbell)
custom_objects = { "mulBlock": cl.mulBlock, "ifftBlock": cl.ifftBlock, "dumbellXL": cl.dumbellXL, "fftBlock": cl.fftBlock, "conBlock": cl.conBlock, "resBlock": cl.resBlock, "PSNR_loss": metrics.PSNR_loss, "image_gradient_loss": metrics.image_gradient_loss, "SSIM_loss": metrics.SSIM_loss } model = models.load_model("RCC_DumbellXL_4x_MSE.h5", custom_objects=custom_objects) dL = dataOp.data_loader("C:/Datasets/MRI_Data/Recon_v4/Val", 1, 4, 10, False) d = dL.__getitem__(200) img_dict, stat_dict = hf.getStats(model, d) print(stat_dict) hf.gen_comparison_graph(img_dict) def soloImg(out): out = np.reshape(out, (256, 256, 2)) out = out[:, :, 0] + 1j * out[:, :, 1] plt.figure() plt.subplot(1, 2, 1) plt.imshow(np.abs(out), cmap='gray') plt.title('Magnitude')