leg0 = [] leg1 = [] for i, outvec in enumerate(output_VEC): trainRMSE, testRMSE = A.getTrainTestDependence(outvec) ax[0].plot(variable, testRMSE, linestyle=linestyles[i], linewidth=3, marker='.', markersize=8) leg0.append(feature_opt_vec[i]) # Coefficients Dependence Multi featarray, relevant_feats = A.getCoefDependence(outvec, threshold=0.01, invert_sign=True) for j in range(len(relevant_feats)): ax[1].plot(variable, featarray[:, j], linestyle=styles[i][0], marker=styles[i][1], linewidth=2.5, markersize=7) leg = ax[1].legend(latexify_varcoef(relevant_feats, cdf=False), bbox_to_anchor=(.98, 1), fontsize=14) ax[0].set_xlabel(xlabel, fontsize=14) ax[0].set_ylabel('RMSE', fontsize=14) ax[0].legend(leg0)
linestyles = ['solid', 'dashed', 'dashdot', 'dotted'] marker = ['o', 'v', 's', '*'] #, '^', '>', '<', 'x', 'D', '1', '.', '2', '3', '4'] styles = [[l, m] for l in linestyles for m in marker] mse = [min(out['alpha_mse_path']) for out in output_vec] ax[0].plot(variable, testRMSE, '.-', linewidth=3, markersize=8) # ax[0].plot(variable, mse, '*-', linewidth=3, markersize=8) ax[0].set_xlabel('$N_{MC}$, Number of Realizations', fontsize=14) ax[0].set_ylabel('RMSE on $\mathcal D_\t{test}$', fontsize=14) # ax[0].legend(['Test Error', 'MSE']) # Coefficients Dependence Multi featarray, relevant_feats = A.getCoefDependence(output_vec, threshold=threshold, invert_sign=invert_sign) for i in range(len(relevant_feats)): ax[1].plot(variable, featarray[:, i], linestyle=styles[i][0], marker=styles[i][1], linewidth=2.5, markersize=7) ax[1].set_xlabel('$N_{MC}$, Number of Realizations', fontsize=14) ax[1].set_ylabel('Coefficients', fontsize=14) leg = ax[1].legend(latexify_varcoef(relevant_feats, cdf=cdf), bbox_to_anchor=(1, 1), fontsize=14) leg.get_frame().set_linewidth(0.0)