import matplotlib.pyplot as plt from train_config import train_images, val_images, test_images, train_gt, val_gt from train_config import num_classes, train_batch_size, val_batch_size from train_config import vgg_pretrained, epochs # Put the paths to the datasets in lists, because that's what `BatchGenerator` requires as input. train_image_dirs = [train_images] train_ground_truth_dirs = [train_gt] val_image_dirs = [val_images] val_ground_truth_dirs = [val_gt] train_dataset = BatchGenerator(image_dirs=train_image_dirs, image_file_extension='png', ground_truth_dirs=train_ground_truth_dirs, image_name_split_separator='leftImg8bit', ground_truth_suffix='gtFine_labelIds', check_existence=True, num_classes=num_classes) val_dataset = BatchGenerator(image_dirs=val_image_dirs, image_file_extension='png', ground_truth_dirs=val_ground_truth_dirs, image_name_split_separator='leftImg8bit', ground_truth_suffix='gtFine_labelIds', check_existence=True, num_classes=num_classes) num_train_images = train_dataset.get_num_files() num_val_images = val_dataset.get_num_files()
df = pd.read_csv('dataset/csv/imdb_csv/imdb_age_regression_train_split_47950-70-10-20.csv') # In[5]: cols = list(df.columns[1:]) in_format = list(df.columns) cols, in_format # In[6]: train_dataset = BatchGenerator(box_output_format=cols) validation_dataset = BatchGenerator(box_output_format=cols) train_dataset. parse_csv(labels_filename='dataset/csv/imdb_csv/imdb_age_regression_train_split_47950-70-10-20.csv', images_dir='dataset/imdb-hand-crop', input_format=in_format) validation_dataset.parse_csv(labels_filename='dataset/csv/imdb_csv/imdb_age_regression_val_split_47950-70-10-20.csv', images_dir='dataset/imdb-hand-crop', input_format=in_format) # In[7]: img_height, img_width, img_depth = (224,224,3)
# ### ATENÇÃO: SELECIONAR OS PATHS PROS PESOS # In[2]: activations = ['relu', 'lrelu'] img_treats = ['image-treat-1', 'image-treat-2', 'image-treat-3'] nets = ['lenet', 'alexnet'] for img_treat in img_treats: for net in nets: for activation in activations: # In[3]: test_dataset = BatchGenerator(box_output_format=['class_id']) test_dataset.parse_csv( labels_filename= '/home/nicoli/github/alexnet/dataset/csv/imdb_csv/imdb_age_regression_test_split_47950-70-10-20.csv', images_dir= '/home/nicoli/github/alexnet/dataset/imdb-hand-crop/', input_format=['image_name', 'class_id']) # In[4]: print("Number of images in the dataset:", test_dataset.get_n_samples()) # In[5]: img_height, img_width, img_depth = (224, 224, 3)