Exemple #1
0
def pvalue_distribution(sampleNumber, featureNumber, balanceRatio,
                        betaglobinIndex, iterations):
    mylist = []
    for i in range(0, iterations):
        if (i % 10 == 0):
            print(i)
        dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
            sampleNumber, featureNumber, balanceRatio, 0, betaglobinIndex, [],
            [])
        dataset_rae, pvalue_threshold = feature_selection.rare_allele_enrichment_or(
            dataset, labels, 0, 0, betaglobinIndex, 0.03)
        mylist.append(pvalue_threshold)
    import csv
    with open('pvalue_distribution.csv', 'w', newline='') as myfile:
        wr = csv.writer(myfile, quoting=csv.QUOTE_ALL)
        wr.writerow(mylist)
        return
Exemple #2
0
def cross_validation_pipeline(sampleNumber, featureNumber, balanceRatio,
                              betaglobinIndex, k):
    from sklearn.model_selection import KFold
    print("Creating dataset")
    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
        sampleNumber, featureNumber, balanceRatio, 0, betaglobinIndex, [], [])
    labels = np.array(labels)
    print("Feature selection")
    dataset, pvalue_threshold = feature_selection.rare_allele_enrichment_or(
        dataset, labels, 0, 0, betaglobinIndex, 0.05)
    kf = KFold(n_splits=k, shuffle=True)
    fpr_array = []
    tpr_array = []
    roc_array = []
    label_array = ['0 Spikes', '1 Spike', '5 Spikes', '10 Spikes']
    for train, test in kf.split(dataset):
        print("Kfold")
        print("%s %s" % (train, test))
        x_train, x_test = dataset.iloc[train], dataset.iloc[test]
        y_train, y_test = labels[train], labels[test]
        model_1_rae, model_2_rae = classification.train_model(
            x_train, y_train, 0, 0)
        fpr_1_rae, tpr_1_rae, roc_1_rae, accuracy_1_rae, sensitivity_1_rae, specificity_1_rae, rf_pred = validation.validate_model(
            model_1_rae, x_test, y_test, 0.7, 1)
        fpr_array.append(fpr_1_rae)
        tpr_array.append(tpr_1_rae)
        roc_array.append(roc_1_rae)
        validation.plot_roc_curve(fpr_1_rae, tpr_1_rae, roc_1_rae, label_array,
                                  'ROC-AUC Curve for Random Forest',
                                  'rf_rae_spike', 0)

    fpr_array = np.array(fpr_array)
    tpr_array = np.array(tpr_array)
    roc_array = np.array(roc_array)

    final_fpr = np.average(fpr_array, axis=0)
    final_tpr = np.average(tpr_array, axis=0)
    final_roc = np.average(roc_array, axis=0)
    validation.plot_roc_curve(final_fpr, final_tpr, final_roc, label_array,
                              'ROC-AUC Curve for Random Forest',
                              'rf_rae_spike', 0)
Exemple #3
0
def main():

    opt = parser.get_parser()
    sample_number = opt.sample
    feature_number = opt.feature
    balance_ratio = opt.balance
    betaglobin_index = 10
    number_of_spikes = opt.spikes
    combination = opt.combination
    tuning = opt.tuning
    test_type = opt.test_type
    threshold = opt.threshold
    iterations = opt.iterations
    my_functions = opt.my_functions
    robustness = opt.robustness
    contingency = opt.contingency
    subtract = opt.subtract
    test_random_data = opt.test_random_data

    plot_pca = 1
    seed = np.random.randint(0, 1000000)

    if (test_type == 1):
        number_of_spikes = [0, 1, 5, 10]
        label_array = ['0 Spikes', '1 Spike', '5 Spikes', '10 Spikes']
        iterations = len(label_array)
        subtract = opt.subtract
    elif (test_type == 2):
        feature_number = [200, 2000, 20000, 200000]
        label_array = [
            '200 features', '2000 features', '20000 features',
            '200000 features'
        ]
        iterations = len(label_array)
    elif (test_type == 3):
        sample_number = [50, 100, 500, 1000]
        label_array = [
            '50 samples', '100 samples', '500 samples', '1000 samples'
        ]
        iterations = len(label_array)
    elif (test_type == 4):
        balance_ratio = [0.25, 0.50, 0.75]
        label_array = [
            'Unbalanced control-25/disease-75',
            'Balanced conytol-50/disease-50',
            'Unbalanced control-75/disease-25'
        ]
        iterations = len(label_array)

    if (test_type == 0):

        acc_1 = []
        acc_2 = []
        sens_1 = []
        sens_2 = []
        spec_1 = []
        spec_2 = []
        spiked_array = []
        spike_indexes = []

        for i in range(0, iterations):
            # Generates new synthetic dataset based on the dataset parameters listed above
            print("Generating Dataset: " + str(sample_number) + " Samples, " +
                  str(feature_number) + " Features, " + str(number_of_spikes) +
                  " Spikes")
            # Test robustness of model, saves the set of spikes and then changes the randomness (other values) of the data and validates
            if robustness:
                if i == 0:
                    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                        sample_number, feature_number, balance_ratio,
                        number_of_spikes, betaglobin_index, [], [])
                else:
                    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                        sample_number, feature_number, balance_ratio,
                        number_of_spikes, betaglobin_index, spiked_array,
                        spike_indexes)
                print(spike_indexes)
            # Test a random dataset (not using the synthetic genetaror tool)
            elif test_random_data:
                dataset, labels = data_generator.random_data(
                    (sample_number, feature_number), balance_ratio)
            # Regular run
            else:
                dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                    sample_number, feature_number, balance_ratio,
                    number_of_spikes, betaglobin_index, [], [])
            print("Dataset Created")

            print("Feature Selection Module Begins")

            print("Feature Selection: PCA")
            dataset_pca = feature_selection.principal_component_analysis(
                dataset, labels, plot_pca)
            print("PCA Dataset shape: (" + str(dataset_pca.shape[0]) + ", " +
                  str(dataset_pca.shape[1]) + ")")

            print("Feature Selection Finished")

            print("Splitting Dataset Into Train and Test Sets")
            x_train_pca, x_test_pca, y_train_pca, y_test_pca = sklearn.model_selection.train_test_split(
                dataset_pca,
                labels,
                test_size=.25,
                random_state=seed,
                shuffle=True)
            print("Dataset Splitting Finished")

            print("Classification Module Begin")
            model_1_pca, model_2_pca = classification.train_model(
                x_train_pca, y_train_pca, combination, tuning)
            print("Classification Module Finished")

            print("Validation Module Begins")
            fpr_1_pca, tpr_1_pca, roc_score_1_pca, accuracy_1_pca, sensitivity_1_pca, specificity_1_pca, rf_pred = validation.validate_model(
                model_1_pca, x_test_pca, y_test_pca, threshold, my_functions)
            fpr_2_pca, tpr_2_pca, roc_score_2_pca, accuracy_2_pca, sensitivity_2_pca, specificity_2_pca, rf_pred = validation.validate_model(
                model_2_pca, x_test_pca, y_test_pca, threshold, my_functions)

            if (contingency):
                if (i == 0):
                    contingency_tables = validation.contingency_matrix_test(
                        x_test_pca, rf_pred)
                    print(contingency_tables[0])
                    validation.plot_matrix(contingency_tables)
            print("Validation Module Finished")

            if test_random_data == 1:
                if (i == 0):
                    validation.plot_roc_curve_random(
                        fpr_1_pca, tpr_1_pca, roc_score_1_pca,
                        'ROC-AUC Curve for Random Forest', 'rf_pca_rand')
                    validation.plot_roc_curve_random(
                        fpr_2_pca, tpr_2_pca, roc_score_2_pca,
                        'ROC-AUC Curve for Gradient Boosting', 'xgb_pca_rand')

            acc_1.append(accuracy_1_pca)
            acc_2.append(accuracy_2_pca)
            sens_1.append(sensitivity_1_pca)
            sens_2.append(sensitivity_2_pca)
            spec_1.append(specificity_1_pca)
            spec_2.append(specificity_2_pca)

        if (robustness):
            print(acc_1)
            print(sens_1)
            print(spec_1)

    else:
        tpr_1 = []
        fpr_1 = []
        roc_1 = []
        tpr_2 = []
        fpr_2 = []
        roc_2 = []

        for i in range(0, iterations):

            if (test_type == 1):
                # Generates new synthetic dataset based on the dataset parameters listed above
                print("Generating Dataset: " + str(sample_number) +
                      " Samples, " + str(feature_number) + " Features, " +
                      str(number_of_spikes[i]) + " Spikes")
                dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                    sample_number, feature_number, balance_ratio,
                    number_of_spikes[i], betaglobin_index, [], [])
                #dataset, labels, spike_indexes = data_generator.create_dataset(sample_number, feature_number, balance_ratio, number_of_spikes[i], betaglobin_index)
                print("Dataset Created")
            elif (test_type == 2):
                # Generates new synthetic dataset based on the dataset parameters listed above
                print("Generating Dataset: " + str(sample_number[i]) +
                      " Samples, " + str(feature_number) + " Features, " +
                      str(number_of_spikes) + " Spikes")
                dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                    sample_number[i], feature_number, balance_ratio,
                    number_of_spikes, betaglobin_index, [], [])
                print("Dataset Created")
            elif (test_type == 3):
                # Generates new synthetic dataset based on the dataset parameters listed above
                print("Generating Dataset: " + str(sample_number) +
                      " Samples, " + str(feature_number[i]) + " Features, " +
                      str(number_of_spikes) + " Spikes")
                dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                    sample_number, feature_number[i], balance_ratio,
                    number_of_spikes, betaglobin_index, [], [])
                print("Dataset Created")
            elif (test_type == 4):
                # Generates new synthetic dataset based on the dataset parameters listed above
                print("Generating Dataset: " + str(sample_number) +
                      " Samples, " + str(feature_number) + " Features, " +
                      str(number_of_spikes) + " Spikes")
                dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                    sample_number, feature_number, balance_ratio[i],
                    number_of_spikes, betaglobin_index, [], [])
                print("Dataset Created")

            print("Feature Selection Module Begins")

            print("Feature Selection: PCA")
            if (test_type == 4):
                dataset_pca = feature_selection.principal_component_analysis(
                    dataset, labels, plot_pca)
            else:
                dataset_pca = feature_selection.principal_component_analysis(
                    dataset, labels, plot_pca)
            print("PCA Dataset shape: (" + str(dataset_pca.shape[0]) + ", " +
                  str(dataset_pca.shape[1]) + ")")

            print("Feature Selection Finished")

            print("Splitting Dataset Into Train and Test Sets")
            x_train_pca, x_test_pca, y_train_pca, y_test_pca = sklearn.model_selection.train_test_split(
                dataset_pca,
                labels,
                test_size=.25,
                random_state=seed,
                shuffle=True)
            print("Dataset Splitting Finished")

            print("Classification Module Begin")
            model_1_pca, model_2_pca = classification.train_model(
                x_train_pca, y_train_pca, combination, tuning)
            print("Classification Module Finished")

            print("Validation Module Begins")
            fpr_1_pca, tpr_1_pca, roc_score_1_pca, accuracy_1_pca, sensitivity_1_pca, specificity_1_pca, prediction = validation.validate_model(
                model_1_pca, x_test_pca, y_test_pca, threshold, my_functions)
            fpr_2_pca, tpr_2_pca, roc_score_2_pca, accuracy_2_pca, sensitivity_2_pca, specificity_2_pca, prediction = validation.validate_model(
                model_2_pca, x_test_pca, y_test_pca, threshold, my_functions)
            print("Validation Module Finished")

            fpr_1.append(fpr_1_pca)
            tpr_1.append(tpr_1_pca)
            roc_1.append(roc_score_1_pca)
            fpr_2.append(fpr_2_pca)
            tpr_2.append(tpr_2_pca)
            roc_2.append(roc_score_2_pca)

        validation.plot_roc_curve(fpr_1, tpr_1, roc_1, label_array,
                                  'ROC-AUC Curve for Random Forest',
                                  'rf_pca_spike', subtract)
        validation.plot_roc_curve(fpr_2, tpr_2, roc_2, label_array,
                                  'ROC-AUC Curve for Gradient Boosting',
                                  'gdb_pca_spike', subtract)

    print("Run Finished")
Exemple #4
0
def final_test(sampleNumber, featureNumber, balanceRatio, betaglobinIndex,
               seed, threshold, my_functions, subtract, combination, tuning):
    tpr_1 = []
    fpr_1 = []
    roc_1 = []
    tpr_2 = []
    fpr_2 = []
    roc_2 = []
    label_array = ['0 Spikes', '1 Spike', '5 Spikes', '10 Spikes']
    pvalue_threshold = 0
    spike_list = []
    # First dataset
    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
        sampleNumber, featureNumber, balanceRatio, 0, betaglobinIndex, [], [])
    print("first dataset created")
    for i in range(0, 4):
        # Inject dataset depending on
        print('dataset injecting:' + str(i))
        dataset, new_spikes = inject_dataset(dataset, i, sampleNumber,
                                             featureNumber, balanceRatio,
                                             betaglobinIndex)
        spike_list.append(new_spikes)
        print("Feature selection")
        if (i == 0):
            #dataset_rae = feature_selection.rare_allele_enrichment(dataset, balanceRatio, 0)
            dataset_rae, pvalue_threshold = feature_selection.rare_allele_enrichment_or(
                dataset, labels, 0, 0, betaglobinIndex, 0.03)
        else:
            #dataset_rae = feature_selection.rare_allele_enrichment(dataset, balanceRatio, 0)
            dataset_rae, pvalue_threshold = feature_selection.rare_allele_enrichment_or(
                dataset, labels, 0, 0, betaglobinIndex, pvalue_threshold)
        print("Feature selection done")

        print("Splitting Dataset Into Train and Test Sets")
        x_train_rae, x_test_rae, y_train_rae, y_test_rae = sklearn.model_selection.train_test_split(
            dataset_rae,
            labels,
            test_size=.25,
            random_state=seed,
            shuffle=True)
        print("Dataset Splitting Finished")

        print("Classification Module Begin")
        model_1_rae, model_2_rae = classification.train_model(
            x_train_rae, y_train_rae, combination, tuning)
        print("Classification Module Finished")

        print("Validation Module Begins")
        fpr_1_rae, tpr_1_rae, roc_score_1_rae, accuracy_1_rae, sensitivity_1_rae, specificity_1_rae, prediction = validation.validate_model(
            model_1_rae, x_test_rae, y_test_rae, threshold, my_functions)
        fpr_2_rae, tpr_2_rae, roc_score_2_rae, accuracy_2_rae, sensitivity_2_rae, specificity_2_rae, prediction = validation.validate_model(
            model_2_rae, x_test_rae, y_test_rae, threshold, my_functions)
        print("Validation Module Finished")

        fpr_1.append(fpr_1_rae)
        tpr_1.append(tpr_1_rae)
        roc_1.append(roc_score_1_rae)
        fpr_2.append(fpr_2_rae)
        tpr_2.append(tpr_2_rae)
        roc_2.append(roc_score_2_rae)

    print(spike_list)
    print("FINAL PVALUE THRESHOLD: " + str(pvalue_threshold))
    validation.plot_roc_curve(
        fpr_1, tpr_1, roc_1, label_array, 'ROC-AUC Curve for Random Forest',
        './results_0826/new_rf_rae_spike' + str(sampleNumber) + '_' +
        str(balanceRatio), subtract)
    validation.plot_roc_curve(
        fpr_2, tpr_2, roc_2, label_array,
        'ROC-AUC Curve for Gradient Boosting',
        './results_0826/new_gdb_rae_spike' + str(sampleNumber) + '_' +
        str(balanceRatio), subtract)

    return
Exemple #5
0
def real_main():

    opt = parser.get_parser()
    sample_number = opt.sample
    feature_number = opt.feature
    balance_ratio = opt.balance
    betaglobin_index = 10
    number_of_spikes = opt.spikes
    combination = opt.combination
    tuning = opt.tuning
    test_type = opt.test_type
    threshold = opt.threshold
    iterations = opt.iterations
    my_functions = opt.my_functions
    robustness = opt.robustness
    contingency = opt.contingency
    subtract = opt.subtract
    test_random_data = opt.test_random_data
    final_testing = opt.final_testing

    plot_rae = 0
    plot_shap = 0
    plot_pca = 0
    seed = np.random.randint(0, 1000000)

    if (final_testing):
        #pvalue_distribution(sample_number, feature_number, balance_ratio, betaglobin_index, 1000)
        #final_test(sample_number, feature_number, balance_ratio, betaglobin_index, seed, threshold, my_functions, subtract, combination, tuning)
        cross_validation_pipeline(sample_number, feature_number, balance_ratio,
                                  betaglobin_index, 5)
    else:
        if (test_type == 1):
            number_of_spikes = [0, 1, 5, 10]
            label_array = ['0 Spikes', '1 Spike', '5 Spikes', '10 Spikes']
            #number_of_spikes = [0, 5]
            #label_array = ['0 Spikes', '5 Spikes']
            iterations = len(label_array)
            subtract = opt.subtract
        elif (test_type == 2):
            sample_number = [50, 100, 500, 1000]
            label_array = [
                '50 samples', '100 samples', '500 samples', '1000 samples'
            ]
            iterations = len(label_array)
        elif (test_type == 3):
            feature_number = [100, 1000, 5000, 10000]
            label_array = [
                '100 features', '1000 features', '5000 features',
                '10000 features'
            ]
            iterations = len(label_array)
        elif (test_type == 4):
            balance_ratio = [0.25, 0.50, 0.75]
            label_array = [
                'Unbalanced control-25/disease-75',
                'Balanced control-50/disease-50',
                'Unbalanced control-75/disease-25'
            ]
            iterations = len(label_array)

        if (test_type == 0):

            acc_1 = []
            acc_2 = []
            sens_1 = []
            sens_2 = []
            spec_1 = []
            spec_2 = []
            spiked_array = []
            spike_indexes = []

            for i in range(0, iterations):
                # Generates new synthetic dataset based on the dataset parameters listed above
                print("Generating Dataset: " + str(sample_number) +
                      " Samples, " + str(feature_number) + " Features, " +
                      str(number_of_spikes) + " Spikes")
                # Test robustness of model, saves the set of spikes and then changes the randomness (other values) of the data and validates
                if robustness:
                    if i == 0:
                        dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                            sample_number, feature_number, balance_ratio,
                            number_of_spikes, betaglobin_index, [], [])
                    else:
                        dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                            sample_number, feature_number, balance_ratio,
                            number_of_spikes, betaglobin_index, spiked_array,
                            spike_indexes)
                    print(spike_indexes)
                # Test a random dataset with nothing added to it
                elif test_random_data:
                    dataset, labels = data_generator.random_data(
                        (sample_number, feature_number), balance_ratio)
                # Regular run
                else:
                    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                        sample_number, feature_number, balance_ratio,
                        number_of_spikes, betaglobin_index, [], [])
                print("Dataset Created")

                print("Feature Selection Module Begins")

                print("Feature Selection: RAE")
                dataset_nofs = dataset
                dataset_rae, pvalue_threshold = feature_selection.rare_allele_enrichment_or(
                    dataset, labels, 0, 0, betaglobin_index, 0.05)
                #dataset_rae = feature_selection.rare_allele_enrichment(dataset, balance_ratio, plot_rae)
                print("RAE Dataset shape: (" + str(dataset_rae.shape[0]) +
                      ", " + str(dataset_rae.shape[1]) + ")")

                #print("Feature Selection: PCA")
                #dataset_pca = feature_selection.principal_component_analysis(dataset, labels, plot_pca)
                #print("PCA Dataset shape: (" + str(dataset_pca.shape[0]) + ", " + str(dataset_pca.shape[1]) + ")")

                #print("Feature Selection: SHAP")
                #dataset_shap = feature_selection.shapley_values(dataset, labels, plot_shap)
                #print("RAE Dataset shape: (" + str(dataset_shap.shape[0]) + ", " + str(dataset_shap.shape[1]) + ")")

                print("Feature Selection Finished")

                print("Splitting Dataset Into Train and Test Sets")
                x_train_rae, x_test_rae, y_train_rae, y_test_rae = sklearn.model_selection.train_test_split(
                    dataset_rae,
                    labels,
                    test_size=.25,
                    random_state=seed,
                    shuffle=True)
                x_train_nofs, x_test_nofs, y_train_nofs, y_test_nofs = sklearn.model_selection.train_test_split(
                    dataset_nofs,
                    labels,
                    test_size=.25,
                    random_state=seed,
                    shuffle=True)
                #x_train_pca, x_test_pca, y_train_pca, y_test_pca = sklearn.model_selection.train_test_split(dataset_pca, labels, test_size = .25, random_state = seed, shuffle = True)
                #x_train_shap, x_test_shap, y_train_shap, y_test_shap = sklearn.model_selection.train_test_split(dataset_shap, labels, test_size = .25, random_state = seed, shuffle = True)
                print("Dataset Splitting Finished")

                print("Classification Module Begin")
                model_1_rae, model_2_rae = classification.train_model(
                    x_train_rae, y_train_rae, combination, tuning)
                model_1_nofs, model_2_nofs = classification.train_model(
                    x_train_nofs, y_train_nofs, combination, tuning)
                #model_1_pca, model_2_pca = classification.train_model(x_train_pca, y_train_pca, combination, tuning)
                #model_1_shap, model_2_shap = classification.train_model(x_train_shap, y_train_shap, combination, tuning)
                print("Classification Module Finished")

                print("Validation Module Begins")
                fpr_1_rae, tpr_1_rae, roc_score_1_rae, accuracy_1_rae, sensitivity_1_rae, specificity_1_rae, rf_pred = validation.validate_model(
                    model_1_rae, x_test_rae, y_test_rae, threshold,
                    my_functions)
                #fpr_2_rae, tpr_2_rae, roc_score_2_rae, accuracy_2_rae, sensitivity_2_rae, specificity_2_rae, xgb_pred = validation.validate_model(model_2_rae, x_test_rae, y_test_rae, threshold, my_functions)
                fpr_1_rae, tpr_1_rae, roc_score_1_rae, accuracy_1_rae, sensitivity_1_rae, specificity_1_rae, rf_pred = validation.validate_model(
                    model_1_nofs, x_test_nofs, y_test_nofs, threshold,
                    my_functions)
                if (contingency):
                    if (i == 0):
                        contingency_tables = validation.contingency_matrix_test(
                            x_test_rae, rf_pred)
                        print(contingency_tables[0])
                        validation.plot_matrix(contingency_tables)
                print("Validation Module Finished")

                if test_random_data == 1:
                    if (i == 0):
                        validation.plot_roc_curve_random(
                            fpr_1_rae, tpr_1_rae, roc_score_1_rae,
                            'ROC-AUC Curve for Random Forest', 'rf_rae_rand')
                        validation.plot_roc_curve_random(
                            fpr_2_rae, tpr_2_rae, roc_score_2_rae,
                            'ROC-AUC Curve for Gradient Boosting',
                            'xgb_rae_rand')

                acc_1.append(accuracy_1_rae)
                acc_2.append(accuracy_2_rae)
                sens_1.append(sensitivity_1_rae)
                sens_2.append(sensitivity_2_rae)
                spec_1.append(specificity_1_rae)
                spec_2.append(specificity_2_rae)
                acc_nofs.append(accuracy_1_nofs)
                sens_nofs.append(sensitivity_1_nofs)
                spec_nofs.append(specificity_1_nofs)

                validation.plot_roc_curve_random(
                    fpr_1_rae, tpr_1_rae, roc_score_1_rae,
                    'ROC-AUC Curve for Random Forest', 'rf_rae_rand')
                #validation.plot_roc_curve_random(fpr_2_rae, tpr_2_rae, roc_score_2_rae, 'ROC-AUC Curve for Gradient Boosting', 'xgb_rae_rand')

            if (robustness):
                print(acc_1)
                print(sens_1)
                print(spec_1)

        else:
            tpr_1 = []
            fpr_1 = []
            roc_1 = []
            tpr_2 = []
            fpr_2 = []
            roc_2 = []
            fpr_nofs = []
            tpr_nofs = []
            roc_nofs = []

            pvalue_threshold = 0

            for i in range(0, iterations):

                if (test_type == 1):
                    # Generates new synthetic dataset based on the dataset parameters listed above
                    print("Generating Dataset: " + str(sample_number) +
                          " Samples, " + str(feature_number) + " Features, " +
                          str(number_of_spikes[i]) + " Spikes")
                    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                        sample_number, feature_number, balance_ratio,
                        number_of_spikes[i], betaglobin_index, [], [])
                    #dataset, labels, spike_indexes = data_generator.create_dataset(sample_number, feature_number, balance_ratio, number_of_spikes[i], betaglobin_index)
                    print("Dataset Created")
                elif (test_type == 2):
                    # Generates new synthetic dataset based on the dataset parameters listed above
                    print("Generating Dataset: " + str(sample_number[i]) +
                          " Samples, " + str(feature_number) + " Features, " +
                          str(number_of_spikes) + " Spikes")
                    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                        sample_number[i], feature_number, balance_ratio,
                        number_of_spikes, betaglobin_index, [], [])
                    # Dataset used to find the pvalue threshold
                    random_dataset, random_labels, random_spike_indexes, random_spiked_array = data_generator.createDataset(
                        sample_number[i], feature_number, balance_ratio, 0,
                        betaglobin_index, [], [])
                    print("Dataset Created")
                elif (test_type == 3):
                    # Generates new synthetic dataset based on the dataset parameters listed above
                    print("Generating Dataset: " + str(sample_number) +
                          " Samples, " + str(feature_number[i]) +
                          " Features, " + str(number_of_spikes) + " Spikes")
                    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                        sample_number, feature_number[i], balance_ratio,
                        number_of_spikes, betaglobin_index, [], [])
                    # Dataset used to find the pvalue threshold
                    random_dataset, random_labels, random_spike_indexes, random_spiked_array = data_generator.createDataset(
                        sample_number, feature_number[i], balance_ratio, 0,
                        betaglobin_index, [], [])
                    print("Dataset Created")
                elif (test_type == 4):
                    # Generates new synthetic dataset based on the dataset parameters listed above
                    print("Generating Dataset: " + str(sample_number) +
                          " Samples, " + str(feature_number) + " Features, " +
                          str(number_of_spikes) + " Spikes")
                    dataset, labels, spike_indexes, spiked_array = data_generator.createDataset(
                        sample_number, feature_number, balance_ratio[i],
                        number_of_spikes, betaglobin_index, [], [])
                    # Dataset used to find the pvalue threshold
                    random_dataset, random_labels, random_spike_indexes, random_spiked_array = data_generator.createDataset(
                        sample_number, feature_number, balance_ratio[i], 0,
                        betaglobin_index, [], [])
                    print("Dataset Created")

                print("Feature Selection Module Begins")

                print("Feature Selection: RAE")
                dataset_nofs = dataset
                #random_dataset_rae, pvalue_threshold = feature_selection.rare_allele_enrichment_or(random_dataset, random_labels, 0, 0, betaglobin_index, 0.03)
                print("PVALUE THRESHOLD: " + str(pvalue_threshold))
                #if(i > 0):
                dataset_rae, pvalue_threshold = feature_selection.rare_allele_enrichment_or(
                    dataset, labels, 0, 0, betaglobin_index, 0.05)
                #    dataset_rae = feature_selection.rare_allele_enrichment(dataset, balance_ratio[i], plot_rae)
                #else:
                #    dataset_rae = dataset.sample(n = 30, axis = 1)
                #print(spike_indexes)
                print("RAE Dataset shape: (" + str(dataset_rae.shape[0]) +
                      ", " + str(dataset_rae.shape[1]) + ")")

                #print(spike_indexes)
                #print(dataset_rae.columns)

                #print("Feature Selection: PCA")
                #ataset_pca = feature_selection.principal_component_analysis(dataset, labels, plot_pca)
                #print("PCA Dataset shape: (" + str(dataset_pca.shape[0]) + ", " + str(dataset_pca.shape[1]) + ")")

                #print("Feature Selection: SHAP")
                #dataset_shap = feature_selection.shapley_values(dataset, labels, plot_shap)
                #print("RAE Dataset shape: (" + str(dataset_shap.shape[0]) + ", " + str(dataset_shap.shape[1]) + ")")

                print("Feature Selection Finished")

                print("Splitting Dataset Into Train and Test Sets")
                x_train_rae, x_test_rae, y_train_rae, y_test_rae = sklearn.model_selection.train_test_split(
                    dataset_rae,
                    labels,
                    test_size=.25,
                    random_state=seed,
                    shuffle=True)
                x_train_nofs, x_test_nofs, y_train_nofs, y_test_nofs = sklearn.model_selection.train_test_split(
                    dataset_nofs,
                    labels,
                    test_size=.25,
                    random_state=seed,
                    shuffle=True)
                #x_train_pca, x_test_pca, y_train_pca, y_test_pca = sklearn.model_selection.train_test_split(dataset_pca, labels, test_size = .25, random_state = seed, shuffle = True)
                #x_train_shap, x_test_shap, y_train_shap, y_test_shap = sklearn.model_selection.train_test_split(dataset_shap, labels, test_size = .25, random_state = seed, shuffle = True)
                print("Dataset Splitting Finished")

                print("Classification Module Begin")
                model_1_rae, model_2_rae = classification.train_model(
                    x_train_rae, y_train_rae, combination, tuning)
                model_1_nofs, model_2_nofs = classification.train_model(
                    x_train_nofs, y_train_nofs, combination, tuning)
                #model_1_pca, model_2_pca = classification.train_model(x_train_pca, y_train_pca, combination, tuning)
                #model_1_shap, model_2_shap = classification.train_model(x_train_shap, y_train_shap, combination, tuning)
                print("Classification Module Finished")

                print("Validation Module Begins")
                fpr_1_rae, tpr_1_rae, roc_score_1_rae, accuracy_1_rae, sensitivity_1_rae, specificity_1_rae, prediction = validation.validate_model(
                    model_1_rae, x_test_rae, y_test_rae, threshold,
                    my_functions)
                fpr_2_rae, tpr_2_rae, roc_score_2_rae, accuracy_2_rae, sensitivity_2_rae, specificity_2_rae, prediction = validation.validate_model(
                    model_2_rae, x_test_rae, y_test_rae, threshold,
                    my_functions)
                fpr_1_nofs, tpr_1_nofs, roc_score_1_nofs, accuracy_1_nofs, sensitivity_1_nofs, specificity_1_nofs, prediction = validation.validate_model(
                    model_1_nofs, x_test_nofs, y_test_nofs, threshold,
                    my_functions)
                #fpr_1_pca, tpr_1_pca, roc_score_1_pca, accuracy_1_pca, sensitivity_1_pca, specificity_1_pca, prediction = validation.validate_model(model_1_pca, x_test_pca, y_test_pca, threshold, my_functions)
                #fpr_2_pca, tpr_2_pca, roc_score_2_pca, accuracy_2_pca, sensitivity_2_pca, specificity_2_pca, prediction = validation.validate_model(model_2_pca, x_test_pca, y_test_pca, threshold, my_functions)
                #fpr_1_shap, tpr_1_shap, roc_score_1_shap, accuracy_1_shap, sensitivity_1_shap, specificity_1_shap, prediction = validation.validate_model(model_1_shap, x_test_shap, y_test_shap, threshold, my_functions)
                #fpr_2_shap, tpr_2_shap, roc_score_2_shap, accuracy_2_shap, sensitivity_2_shap, specificity_2_shap, prediction = validation.validate_model(model_2_shap, x_test_shap, y_test_shap, threshold, my_functions)
                print("Validation Module Finished")

                fpr_1.append(fpr_1_rae)
                tpr_1.append(tpr_1_rae)
                roc_1.append(roc_score_1_rae)
                fpr_2.append(fpr_2_rae)
                tpr_2.append(tpr_2_rae)
                roc_2.append(roc_score_2_rae)

                fpr_nofs.append(fpr_1_nofs)
                tpr_nofs.append(tpr_1_nofs)
                roc_nofs.append(roc_score_1_nofs)

                #fpr_1.append(fpr_1_pca)
                #tpr_1.append(tpr_1_pca)
                #roc_1.append(roc_score_1_pca)
                #fpr_2.append(fpr_2_pca)
                #tpr_2.append(tpr_2_pca)
                #roc_2.append(roc_score_2_pca)
                #fpr_1.append(fpr_1_shap)
                #tpr_1.append(tpr_1_shap)
                #roc_1.append(roc_score_1_shap)
                #fpr_2.append(fpr_2_shap)
                #tpr_2.append(tpr_2_shap)
                #roc_2.append(roc_score_2_shap)

            #validation.plot_roc_curve(fpr_1, tpr_1, roc_1, label_array, 'RAE: ROC-AUC Curve for Random Forest', 'rf_rae_spike', subtract)
            #validation.plot_roc_curve(fpr_2, tpr_2, roc_2, label_array, 'RAE: ROC-AUC Curve for Gradient Boosting', 'gdb_rae_spike', subtract)
            #validation.plot_roc_curve(fpr_nofs, tpr_nofs, roc_nofs, label_array, 'NO FEATURE SELECTION: ROC-AUC Curve for Random Forest', 'rf_nos_spike', subtract)

            return fpr_1, tpr_1, roc_1, fpr_nofs, tpr_nofs, roc_nofs

    print("Run Finished")