model = build_encoder_decoder()
        final = build_refinement(model)
        # if pretrained_path is not None:
        #     final.load_weights(pretrained_path)
    if len(os.listdir(checkpoint_dir)) > 0:
        latest = tf.train.latest_checkpoint(checkpoint_dir)
        final.load_weights(latest)
        initial_epoch = get_initial_epoch(latest)
    else:
        migrate_model_2(final)
        initial_epoch = 0
    final.compile(optimizer='nadam', loss=overall_loss)

    print(final.summary())
    # keras.utils.plot_model(final, "model_modified.png")

    # Final callbacks
    callbacks = [tensor_board, model_checkpoint, early_stop, reduce_lr]

    # Start Fine-tuning
    final.fit(train_gen(),
                        batch_size=4,
                        validation_data=valid_gen(),
                        epochs=epochs,
                        verbose=1,
                        callbacks=callbacks,
                        initial_epoch=initial_epoch,
                        use_multiprocessing=True,
                        workers=2
                        )
Exemple #2
0
        final = multi_gpu_model(model, gpus=num_gpu)
        # rewrite the callback: saving through the original model and not the multi-gpu model.
        model_checkpoint = MyCbk(model)
    else:
        model = build_encoder_decoder()
        final = build_refinement(model)
        # if pretrained_path is not None:
        #     final.load_weights(pretrained_path)
    if len(os.listdir(checkpoint_dir)) > 0:
        latest = tf.train.latest_checkpoint(checkpoint_dir)
        final.load_weights(latest)
    final.compile(optimizer='nadam', loss=overall_loss)

    print(final.summary())

    # Final callbacks
    callbacks = [tensor_board, model_checkpoint, early_stop, reduce_lr]

    # Start Fine-tuning
    final.fit_generator(train_gen(),
                        steps_per_epoch=num_train_samples // batch_size,
                        validation_data=valid_gen(),
                        validation_steps=num_valid_samples // batch_size,
                        epochs=epochs,
                        verbose=1,
                        callbacks=callbacks,
                        # use_multiprocessing=True,
                        # workers=2
                        )