def plot_precip(data, lons=range(0, 128)):
    print 'precip'
    data['totp'] = (('xofyear', 'lat', 'lon'),
                    (data.convection_rain + data.condensation_rain) * 86400.)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]
    ax = data.totp[:, :, lons].mean('lon').plot.contourf(x='xofyear',
                                                         y='lat',
                                                         levels=np.arange(
                                                             6., 25., 3.),
                                                         add_label=False,
                                                         add_colorbar=False,
                                                         extend='min')
    cb1 = plt.colorbar(ax)
    cb1.set_label('Precip, mm/day')
    cs = data.t_surf[:, :,
                     lons].mean('lon').plot.contour(x='xofyear',
                                                    y='lat',
                                                    levels=range(250, 321, 10),
                                                    add_label=False,
                                                    colors='w',
                                                    add_colorbar=False)
    plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
    plt.ylim((-45, 45))
    plt.xlim((1, 73))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.ylabel('Latitude')
    #plt.title('Zonal mean precipitation evolution, mm/day')
    plt.tight_layout()
Exemple #2
0
def mse_adv_hm(run, lev=850., filename='plev_pentad', timeav='pentad', period_fac=1.,lonin=[-1.,361.]):
    
    rcParams['figure.figsize'] = 7, 5
    rcParams['font.size'] = 25
    rcParams['text.usetex'] = True
    
    plot_dir = '/scratch/rg419/plots/clean_diags/'+run+'/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)
        
    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/'+run+'.nc')
    
    if lonin[1]>lonin[0]:
        lons = [data.lon[i] for i in range(len(data.lon)) if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]]
    else:
        lons = [data.lon[i] for i in range(len(data.lon)) if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]]

    cp = 287.04/2*7
    L = 2.500e6
    data['mse_v'] = (cp*data.vcomp_temp + L*data.sphum_v).sel(lon=lons).mean('lon')
    data['mse_v_mean'] = cp*data.vcomp.sel(lon=lons).mean('lon') * data.temp.sel(lon=lons).mean('lon') + L*data.sphum.sel(lon=lons).mean('lon') * data.vcomp.sel(lon=lons).mean('lon')
    data['mse'] = (cp*data.temp + L*data.sphum).sel(lon=lons).mean('lon')
    mse_max_loc = [data.lat[i] for i in data.mse.sel(pfull=lev).argmax('lat').values]

    levels = np.arange(-8000,8000.1,1000.)
    
    mn_dic = month_dic(1)
    tickspace = range(13,72,18)
    labels = [mn_dic[(k+5)/6 ] for k in tickspace]
    
    data.mse_v.sel(pfull=lev).plot.contourf(x='xofyear', y='lat', levels=np.arange(-10.e5,10.1e5,20.e4), extend='both', add_labels=False)
    data.mse.sel(pfull=lev).plot.contour(x='xofyear', y='lat', colors='k', levels=np.arange(200000.,400000.,20000.), add_colorbar=False, add_labels=False)
    plt.plot(data.xofyear,mse_max_loc)
    plt.grid(True,linestyle=':')
    plt.xticks(tickspace,labels,rotation=25)
    plt.tight_layout()  
    plt.ylim(-60,60)
    plt.ylabel('Latitude')
    if lonin == [-1.,361.]:
        figname = 'mse_v.pdf'
    else:
        figname = 'mse_v_' + str(int(lonin[0]))+ '_' + str(int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()   

    
    data.mse_v_mean.sel(pfull=lev).plot.contourf(x='xofyear', y='lat', levels=np.arange(-10.e5,10.1e5,20.e4), extend='both', add_labels=False)
    data.mse.sel(pfull=lev).plot.contour(x='xofyear', y='lat', colors='k', levels=np.arange(200000.,400000.,20000.), add_colorbar=False, add_labels=False)
    plt.plot(data.xofyear,mse_max_loc)
    plt.grid(True,linestyle=':')
    plt.xticks(tickspace,labels,rotation=25)
    plt.tight_layout()  
    plt.ylim(-60,60)
    plt.ylabel('Latitude')
    if lonin == [-1.,361.]:
        figname = 'mse_v_mean.pdf'
    else:
        figname = 'mse_v_mean_' + str(int(lonin[0]))+ '_' + str(int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()   
def plot_u(data, lons=range(0, 128)):
    print 'u'
    data['ucomp_850'] = (('xofyear', 'lat', 'lon'), data.ucomp[:,
                                                               2, :, :].values)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]
    ax = data.ucomp_850[:, :,
                        lons].mean('lon').plot.contourf(x='xofyear',
                                                        y='lat',
                                                        levels=np.arange(
                                                            -20., 21., 4.),
                                                        add_label=False,
                                                        add_colorbar=False,
                                                        extend='neither')
    cb1 = plt.colorbar(ax)
    cb1.set_label('Zonal wind speed, m/s (850 hPa)')
    cs = data.t_surf[:, :,
                     lons].mean('lon').plot.contour(x='xofyear',
                                                    y='lat',
                                                    levels=range(250, 321, 10),
                                                    add_label=False,
                                                    colors='w',
                                                    add_colorbar=False)
    plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
    plt.ylim((-45, 45))
    plt.xlim((1, 73))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.ylabel('Latitude')
    #plt.title('Zonal mean precipitation evolution, mm/day')
    plt.tight_layout()
Exemple #4
0
def bs_plot(inp_fol, years):
    data = load_bs_vars(inp_fol, years)
    #pd_dic = pentad_dic(1)
    mn_dic = month_dic(1)
    #tickspace = range(9,80,18)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]
    ax = data.totp.plot.contourf(x='pentad',
                                 y='lat',
                                 levels=np.arange(6., 31., 3.),
                                 add_label=False,
                                 add_colorbar=False)
    cb1 = plt.colorbar(ax)
    cb1.set_label('Precip, mm/day')
    cs = data.t_surf.plot.contour(x='pentad',
                                  y='lat',
                                  levels=range(250, 321, 10),
                                  add_label=False,
                                  colors='w',
                                  add_colorbar=False)
    plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
    plt.ylim((-45, 45))
    plt.xlim((1, 73))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.ylabel('Latitude')
    #plt.title('Zonal mean precipitation evolution, mm/day')
    plt.tight_layout()
Exemple #5
0
def p_and_t(run,
            months,
            filename='atmos_pentad',
            timeav='pentad',
            period_fac=1.,
            lonin=[-1., 361.]):

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    data = time_means(run,
                      months,
                      filename=filename,
                      timeav=timeav,
                      period_fac=period_fac)
    totp = (data.convection_rain + data.condensation_rain) * 86400.
    lons = pick_lons(data, lonin)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    #    ax=totp[:,:,lons].mean('lon').plot.contourf(x='xofyear', y='lat',levels=np.arange(6.,31.,3.), add_label = False, add_colorbar=False)
    ax = totp[:, :,
              lons].mean('lon').plot.contourf(x='xofyear',
                                              y='lat',
                                              levels=np.arange(2., 15., 2.),
                                              add_label=False,
                                              add_colorbar=False,
                                              extend='both')
    totp[:, :,
         lons].mean('lon').plot.contour(x='xofyear',
                                        y='lat',
                                        levels=np.arange(-92., 109., 100.),
                                        add_label=False,
                                        add_colorbar=False,
                                        colors='k')
    plt.grid(True, linestyle=':')
    cb1 = plt.colorbar(ax)
    cb1.set_label('Precip, mm/day')
    cs = data.t_surf[:, :,
                     lons].mean('lon').plot.contour(x='xofyear',
                                                    y='lat',
                                                    levels=range(250, 321, 10),
                                                    add_label=False,
                                                    colors='w',
                                                    add_colorbar=False)
    plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
    plt.ylim((-45, 45))
    plt.xlim((1, 73))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.ylabel('Latitude')
    plt.tight_layout()
    plt.savefig(plot_dir + 'p_and_t.png')
    plt.close()
Exemple #6
0
def cross_prod(run,
               months,
               filename='plev_pentad',
               timeav='month',
               period_fac=1.,
               land_mask=False,
               level=9):

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/cross_prod/' + str(
        level) + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    mn_dic = month_dic(1)

    data = time_means(run,
                      months,
                      filename=filename,
                      timeav=timeav,
                      period_fac=period_fac)

    uwnd = data.ucomp[:, level, :, :]
    vwnd = data.vcomp[:, level, :, :]

    w = VectorWind(uwnd, vwnd)
    uchi, vchi, upsi, vpsi = w.helmholtz()
    cross_prod = (upsi * vchi - vpsi * uchi)

    for i in range(0, 12):
        ax = cross_prod[i, :, :].plot.contourf(x='lon',
                                               y='lat',
                                               levels=np.arange(
                                                   -200., 201., 10.),
                                               extend='both',
                                               add_colorbar=False,
                                               add_label=False)
        cb1 = plt.colorbar(ax)
        cb1.set_label('Vpsi x Vchi')
        if land_mask:
            land = xr.open_dataset(
                '/scratch/rg419/GFDL_model/GFDLmoistModel/input/land.nc')
            land_plot = xr.DataArray(land.land_mask.values,
                                     [('lat', data.lat), ('lon', data.lon)])
            land_plot.plot.contour(x='lon',
                                   y='lat',
                                   levels=np.arange(0., 2., 1.),
                                   colors='0.75',
                                   add_colorbar=False,
                                   add_labels=False)
        plt.ylabel('Latitude')
        plt.xlabel('Longitude')
        plt.ylim(-10, 45)
        plt.xlim(25, 150)
        plt.tight_layout()
        plt.savefig(plot_dir + str(i + 1) + '_' + str(mn_dic[i + 1]) + '.png')
        plt.close()
def vort_eq_hm(run, lev=150, rotfac=1.0, period_fac=1.):

    rcParams['figure.figsize'] = 15, 6.25
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/crit_lat_test/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #Load in vorticity budget term means
    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/vort_eq_' +
                           run + '.nc')

    # Calculate vertical component of absolute vorticity = f + dv/dx - du/dy
    omega = 7.2921150e-5 * rotfac
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    v_dx = gr.ddx(data.vcomp)  # dvdx
    u_dy = gr.ddy(data.ucomp)  # dudy
    vor = v_dx - u_dy + f

    div = gr.ddx(data.ucomp) + gr.ddy(data.vcomp)
    stretching_mean = -86400.**2. * vor * div
    stretching_hm = stretching_mean.mean('lon')

    mn_dic = month_dic(1)
    tickspace = np.arange(13, 72, 18) * period_fac
    labels = [mn_dic[(k + 5) / 6] for k in range(13, 72, 18)]
    levels = np.arange(-3., 3.1, 0.25)

    stretching_max = np.unravel_index(
        stretching_hm.sel(pfull=lev).isel(lat=range(32, 64)).argmin(),
        (data.pentad.size, 32))
    print stretching_max
    print data.lat[stretching_max[1] + 32]

    stretching_hm.sel(pfull=lev).plot.contourf(x='pentad',
                                               y='lat',
                                               levels=levels,
                                               extend='both',
                                               add_labels=False)
    #ax4.contour(data.xofyear, data.lat, abs_vort.T, levels=np.arange(-12.,13.,2.), colors='k', linewidths=2, alpha=0.25)
    plt.plot(data.pentad[stretching_max[0]], data.lat[stretching_max[1] + 32],
             'kx')
    plt.ylabel('Latitude')
    plt.xlabel('')
    plt.ylim(-60, 60)
    plt.yticks(np.arange(-60, 61, 30))
    plt.xticks(tickspace, labels, rotation=25)
    plt.title('Vortex stretching', fontsize=17)
    plt.grid(True, linestyle=':')
    plt.tight_layout()

    figname = 'vort_stretching_' + run + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
def plot_pd_mom_fn(inp_fol):

    data_p = load_bs_vars(inp_fol, range(11, 41))
    data_file = '/scratch/rg419/plots/monsoon_analysis/' + inp_fol + '/mombudg_data.nc'
    data = xr.open_dataset(data_file)
    print 'data loaded, starting plotting'
    land_file = '/scratch/rg419/GFDL_model/GFDLmoistModel/exp/topo_10m/input/land.nc'
    land = xr.open_dataset(land_file)
    land_plot = xr.DataArray(land.land_mask.values, [('lat', data.lat),
                                                     ('lon', data.lon)])
    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    def plot_mom_var(var, levels):

        if var == 'fv_mn_imb':
            plot_dataa = data.data_vars['fv_av'] + data.data_vars['mom_mean']
        else:
            plot_dataa = data.data_vars[var]
        plot_data = plot_dataa[:, :, 22:65].mean(('lon')) * 10000.

        g = plot_data.plot.contourf(x='pentad',
                                    y='lat',
                                    levels=levels,
                                    add_label=False,
                                    add_colorbar=False,
                                    extend='both')
        cb1 = plt.colorbar(g)
        cb1.set_label('$\displaystyle10^{-4}m/s^2$')
        cs = data_p.totp.plot.contour(x='pentad',
                                      y='lat',
                                      levels=np.arange(6., 31., 6.),
                                      add_label=False,
                                      add_colorbar=False,
                                      colors='k')
        plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
        plt.ylim(0, 90)
        plt.xlim(1, 73)
        plt.xlabel('')
        plt.xticks(tickspace, labels, rotation=25)
        plt.ylabel('Latitude')
        #plt.plot([float(data.pentad[36]),float(data.pentad[36])],[0.,90.],'k--')
        plt.tight_layout()
        plt.title('')
        #plt.title(var_dic[var] + ', $\displaystyle10^{-4}m/s^2$')
        plt.savefig('/scratch/rg419/plots/monsoon_analysis/' + inp_fol + '/' +
                    var + '_lattime.png')
        plt.close()

    vars = [
        'dphidx_av', 'fv_av', 'mom_eddy', 'mom_mean', 'mom_sum', 'fv_mn_imb'
    ]
    for var in vars:
        plot_mom_var(var, np.arange(-2., 2.1, 0.4))
def plot_pd_mom_fn(inp_fol, years):
    data_p = load_bs_vars(inp_fol, years)
    data = mombudg_pd_fn(inp_fol, years)
    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    def plot_mom_var(var, lev, levels):
        var_dic = {
            'fv_av': 'fv',
            'mom_eddy': 'Eddy advective terms',
            'mom_mean': 'Mean state advective terms',
            'mom_sum': 'Residual'
        }
        plot_data = data.data_vars[var]
        plot_data = plot_data * 10000.
        g = plot_data[:, lev, :].plot.contourf(x='pentad',
                                               y='lat',
                                               levels=levels,
                                               add_label=False,
                                               add_colorbar=False,
                                               extend='neither')
        cb1 = plt.colorbar(g)
        cb1.set_label('$\displaystyle10^{-4}m/s^2$')
        cs = data_p.totp.plot.contour(x='pentad',
                                      y='lat',
                                      levels=np.arange(6., 31., 6.),
                                      add_label=False,
                                      add_colorbar=False,
                                      colors='k')
        plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
        plt.ylim(0, 90)
        plt.xlim(1, 73)
        plt.xlabel('')
        plt.xticks(tickspace, labels, rotation=25)
        plt.ylabel('Latitude')
        #plt.plot([float(data.pentad[36]),float(data.pentad[36])],[0.,90.],'k--')
        plt.tight_layout()
        plt.title('')
        #plt.title(var_dic[var] + ', $\displaystyle10^{-4}m/s^2$')
        plt.savefig('/scratch/rg419/plots/mom_budg_work/' + inp_fol + '/' +
                    var + '_lattime.png')
        plt.close()

    vars = ['fv_av', 'mom_eddy', 'mom_mean', 'mom_sum']
    for var in vars:
        plot_mom_var(var, 9, np.arange(-2., 2.1, 0.2))
Exemple #10
0
def plot_aht_eq(run):

    ahteq, swabs, olr, shf, stor = aht_eq(run)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    ahteq.plot(color='m')
    (-1. * stor).plot(color='c')
    (-1. * olr).plot(color='g')
    shf.plot(color='b')
    swabs.plot(color='r')
    #plt.xlim((1,72))
    #plt.xlabel('')
    #plt.xticks(tickspace,labels,rotation=25)
    plt.ylabel('Atmospheric heat transport at the equator, PW')
    plt.savefig('/scratch/rg419/plots/aht_work/aht_eq_' + run + '.pdf',
                format='pdf')
    plt.close()
Exemple #11
0
def lapse_rate(run, pentad, period_fac=1.0):

    #Load in data
    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/' + run +
                           '.nc')

    g = 9.8
    Ra = 287.04

    mn_dic = month_dic(1)
    tickspace = np.arange(13, 72, 18) * period_fac
    labels = [mn_dic[(k + 5) / 6] for k in range(13, 72, 18)]
    levels = np.arange(-1.5, 1.6, 0.25)

    dlnTdp = gr.ddp(np.log(data.temp.mean('lon')))
    dTdz = data.pfull * 100. * g / Ra * dlnTdp * 1000.

    #dTdz.mean('xofyear').plot.contourf(x='lat', y='pfull', extend = 'both', add_labels=False, yincrease=False, levels=np.arange(-10.,10.5,2.))
    #plt.xlabel('Latitude')
    #plt.ylabel('Pressure, hPa')
    #plt.grid(True,linestyle=':')
    #plt.tight_layout()

    #figname = 'dTdz_' + run + '.pdf'
    #plt.savefig(plot_dir + figname, format='pdf')
    #plt.close()

    #ind = abs(dTdz.isel(pfull=range(10,20)) -2.).mean('xofyear').argmin('pfull')
    ind = abs(dTdz.isel(pfull=range(10, 20)) -
              2.).isel(xofyear=pentad).argmin('pfull')

    trop_height = np.zeros([64, 1])

    for i in range(0, 64):
        #trop_height[i] = data.height.mean(('lon','xofyear'))[ind.values[i]+10,i]
        trop_height[i] = data.height.mean(
            ('lon')).isel(xofyear=pentad)[ind.values[i] + 10, i]

    print run, trop_height[32]

    return trop_height
Exemple #12
0
def v_fft(run, months, before_after, filename='plev_daily', period_fac=1.):
    
    rcParams['figure.figsize'] = 10, 15
    rcParams['font.size'] = 25
    rcParams['text.usetex'] = True


    plot_dir = '/scratch/rg419/plots/clean_diags/'+run+'/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)
    
    #Load in dataset
    name_temp = '/scratch/rg419/Data_moist/' + run + '/run%03d/'+filename+'.nc'
    names = [name_temp % m for m in range( months[0], months[1])  ]
    #read data into xarray 
    data = xr.open_mfdataset( names,
        decode_times=False,  # no calendar so tell netcdf lib
        # choose how data will be broken down into manageable chunks.
        chunks={'time': 30})
    data.coords['xofyear'] = np.mod( data.time, 360.*period_fac)
    
    vwnd = data.vcomp.load()

    # Take fourier transform and average over years
    N = 72*period_fac    # Number of samplepoints
    data.coords['wavenumber'] = np.arange(0,len(data.lon))    
    data['v_fft'] = (('time','lat','wavenumber'), 2.0/N * np.abs(fft(vwnd[:,17,:,:]))) #150 hPa
    data = data.groupby('xofyear').mean('time')    
    
    fft_before = data.v_fft[before_after[0]:before_after[0]+20,:,:16].mean('xofyear')
    fft_after = data.v_fft[before_after[1]:before_after[1]+20,:,:16].mean('xofyear')
    
    fft_5 = data.v_fft[:,33,:16]
    fft_45 = data.v_fft[:,48,:16]
    
    mn_dic = month_dic(1)
    tickspace = range(60,360,90)
    labels = [mn_dic[(k+30)/30 ] for k in tickspace]
    
    # Two subplots
    f, axarr = plt.subplots(2, sharex=True)
    plt.set_cmap('inferno_r')
    #First plot
    f1 = axarr[0].contourf(data.wavenumber[:16], data.lat, fft_before, levels = np.arange(3.,19.,3.), extend = 'max')
    axarr[0].set_ylabel('Latitude')
    axarr[0].set_yticks(np.arange(-60.,61.,30.))
    axarr[0].grid(True,linestyle=':')
    #Second plot
    f2 = axarr[1].contourf(data.wavenumber[:16], data.lat, fft_after, levels = np.arange(3.,19.,3.), extend = 'max')
    axarr[1].set_ylabel('Latitude')
    axarr[1].set_yticks(np.arange(-60.,61.,30.))
    axarr[1].set_xlabel('Wavenumber')
    axarr[1].grid(True,linestyle=':')
    
    plt.subplots_adjust(right=0.95, top=0.95, bottom=0., hspace=0.1)
    #Colorbar
    cb1=f.colorbar(f2, ax=axarr.ravel().tolist(), use_gridspec=True, orientation = 'horizontal',fraction=0.15, pad=0.07, aspect=30)
    cb1.set_label('Variance, $(m/s)^2$')
    
    plt.savefig(plot_dir+'fft_before_after.pdf', format='pdf')
    plt.close()
    
    
    
    rcParams['figure.figsize'] = 20, 10
    # Two subplots
    f, axarr = plt.subplots(2, sharex=True)
    #First plot
    f1 = fft_5.plot.contourf(x='xofyear', y='wavenumber', ax=axarr[0], levels = np.arange(3.,19.,3.), extend = 'max', add_colorbar=False, add_labels=False, cmap='inferno_r')
    axarr[0].set_ylabel('Wavenumber')
    axarr[0].grid(True,linestyle=':')
    #Second plot
    f2 = fft_45.plot.contourf(x='xofyear', y='wavenumber', ax=axarr[1], levels = np.arange(3.,19.,3.), extend = 'max', add_colorbar=False, add_labels=False, cmap='inferno_r')
    axarr[1].set_ylabel('Wavenumber')
    axarr[1].set_xticks(tickspace)
    axarr[1].set_xticklabels(labels,rotation=25)
    axarr[1].grid(True,linestyle=':')
    
    plt.subplots_adjust(right=0.95, top=0.95, bottom=0., hspace=0.1)
    #Colorbar
    cb1=f.colorbar(f2, ax=axarr.ravel().tolist(), use_gridspec=True, orientation = 'horizontal',fraction=0.15, pad=0.07, aspect=30)
    cb1.set_label('Variance, $(m/s)^2$')
    
    plt.savefig(plot_dir+'fft_5_45.pdf', format='pdf')
    plt.close()        
Exemple #13
0
def ke_hm(run,
          months,
          filename='plev_pentad',
          timeav='pentad',
          period_fac=1.,
          lonin=[-1., 361.],
          level=10):

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/hm/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    mn_dic = month_dic(1)
    tickspace = range(7, 72, 12)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    data = time_means(run,
                      months,
                      filename=filename,
                      timeav=timeav,
                      period_fac=period_fac)

    if lonin[1] > lonin[0]:
        lons = [
            i for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            i for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    uwnd = data.ucomp[:, level, :, :].load()
    vwnd = data.vcomp[:, level, :, :].load()

    w = VectorWind(uwnd, vwnd)
    uchi, vchi, upsi, vpsi = w.helmholtz()
    ke_chi = 0.5 * (uchi * uchi + vchi * vchi)[:, :, lons].mean('lon')
    ke_psi = 0.5 * (upsi * upsi + vpsi * vpsi)[:, :, lons].mean('lon')

    ax = ke_psi.plot.contourf(x='xofyear',
                              y='lat',
                              levels=np.arange(0., 250., 10.),
                              extend='both',
                              add_colorbar=False,
                              add_label=False)
    plt.grid(True, linestyle=':')
    cb1 = plt.colorbar(ax)
    cb1.set_label('Nondivergent KE')
    cs = uwnd[:, :, lons].mean('lon').plot.contour(x='xofyear',
                                                   y='lat',
                                                   levels=np.arange(
                                                       -1000., 1001., 1000.),
                                                   extend='both',
                                                   colors='w',
                                                   add_colorbar=False,
                                                   add_label=False)
    cs = ke_chi.plot.contour(x='xofyear',
                             y='lat',
                             levels=np.arange(0., 36., 6.),
                             extend='both',
                             add_colorbar=False,
                             colors='k',
                             add_label=False)
    plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.yticks(range(-60, 61, 30))
    plt.ylabel('Latitude')
    plt.tight_layout()
    plt.savefig(plot_dir + 'ke.png')
    plt.close()
        ]
    return lons


plot_dir = '/scratch/rg419/plots/paper_1_figs/revisions/'
mkdir = sh.mkdir.bake('-p')
mkdir(plot_dir)

data = xr.open_dataset(
    '/scratch/rg419/obs_and_reanalysis/gpcp_detrendedpentads.nc')

lons = pick_lons(data, [60., 150.])

data['totp'] = data.precip_clim.sel(lon=lons).mean('lon')

mn_dic = month_dic(1)
tickspace = [13, 31, 49, 68]
labels = ['Mar', 'Jun', 'Sep', 'Dec']

plevels = np.arange(2., 15., 2.)

# Begin plotting: 3 subplots

#First plot
f1 = data.totp.plot.contourf(x='xofyear',
                             y='lat',
                             levels=plevels,
                             add_labels=False,
                             extend='max',
                             cmap='Blues')
#data.totp.plot.contour(x='xofyear', y='lat',levels=np.arange(-92.,109.,100.), add_labels = False, add_colorbar=False, colors='k')
def vort_eq_hm(run, lev=150, lonin=[-1., 361.]):

    rcParams['figure.figsize'] = 15, 6.25
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/paper_1_figs/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #Load in vorticity budget term means
    data_vort = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/vort_eq_' + run + '.nc')
    data_vort = data_vort * 86400.**2.  #Convert to day^-2

    print 'vorticity budget data loaded'

    #Also load climatological data so that transient eddies can be calculated
    data = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/vort_eq_uv' + run + '.nc')
    print 'climatology loaded'

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    # Calculate vertical component of absolute vorticity = f + dv/dx - du/dy
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    v_dx = gr.ddx(data.vcomp)  # dvdx
    u_dy = gr.ddy(data.ucomp)  # dudy
    vor = v_dx - u_dy + f

    abs_vort = vor.sel(lon=lons).mean('lon') * 86400.

    dvordx = gr.ddx(vor)
    dvordy = gr.ddy(vor, vector=False)

    horiz_md_mean = -86400.**2. * (data.ucomp * dvordx + data.vcomp * dvordy)

    div = gr.ddx(data.ucomp) + gr.ddy(data.vcomp)
    stretching_mean = -86400.**2. * vor * div

    horiz_md_hm = horiz_md_mean.sel(lon=lons).mean('lon')
    stretching_hm = stretching_mean.sel(lon=lons).mean('lon')

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]
    levels = np.arange(-1.5, 1.6, 0.25)

    print 'starting plotting'

    # Four subplots
    f, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2,
                                                         3,
                                                         sharex='col',
                                                         sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f2 = horiz_md_hm.plot.contourf(x='xofyear',
                                   y='lat',
                                   levels=levels,
                                   ax=ax1,
                                   extend='both',
                                   add_labels=False)
    #ax1.contour(data.xofyear, data.lat, abs_vort.T, levels=np.arange(-12.,13.,2.), colors='k', linewidths=2, alpha=0.25)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60, 60)
    ax1.set_title('Horizontal advection', fontsize=17)
    ax1.set_yticks(np.arange(-60, 61, 30))
    ax1.grid(True, linestyle=':')
    ax1.text(-15, 60, 'a)')

    #Second plot
    dvordy.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                   y='lat',
                                                   levels=np.arange(
                                                       -1.e-10, 1.05e-10,
                                                       0.1e-10),
                                                   ax=ax2,
                                                   extend='both',
                                                   add_labels=False)
    #ax2.set_ylim(-60,60)
    ax2.set_yticks(np.arange(-60, 61, 30))
    ax2.set_title('$\partial (\overline{\zeta} + f) /\partial y$', fontsize=17)
    ax2.grid(True, linestyle=':')
    ax2.text(-7, 60, 'b)')

    #Third plot
    data.vcomp.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                       y='lat',
                                                       levels=np.arange(
                                                           -12., 13, 2.),
                                                       ax=ax3,
                                                       extend='both',
                                                       add_labels=False)
    ax3.set_ylim(-60, 60)
    ax3.set_yticks(np.arange(-60, 61, 30))
    ax3.set_title('$\overline{v}$', fontsize=17)
    ax3.grid(True, linestyle=':')
    ax3.text(-7, 60, 'c)')

    #Fourth plot
    stretching_hm.plot.contourf(x='xofyear',
                                y='lat',
                                levels=levels,
                                ax=ax4,
                                extend='both',
                                add_labels=False)
    #ax4.contour(data.xofyear, data.lat, abs_vort.T, levels=np.arange(-12.,13.,2.), colors='k', linewidths=2, alpha=0.25)
    ax4.set_ylabel('Latitude')
    ax4.set_ylim(-60, 60)
    ax4.set_yticks(np.arange(-60, 61, 30))
    ax4.set_xticks(tickspace)
    ax4.set_xticklabels(labels, rotation=25)
    ax4.set_title('Vortex stretching', fontsize=17)
    ax4.grid(True, linestyle=':')
    ax4.text(-15, 60, 'd)')

    #Fith plot
    (div.sel(lon=lons).mean('lon') * 86400.).plot.contourf(x='xofyear',
                                                           y='lat',
                                                           levels=np.arange(
                                                               -0.6, 0.7, 0.1),
                                                           ax=ax5,
                                                           extend='both',
                                                           add_labels=False)
    ax5.set_ylim(-60, 60)
    ax5.set_yticks(np.arange(-60, 61, 30))
    ax5.set_xticks(tickspace)
    ax5.set_xticklabels(labels, rotation=25)
    ax5.grid(True, linestyle=':')
    ax5.set_title('Divergence', fontsize=17)
    ax5.text(-7, 60, 'e)')

    #Sixth plot
    (vor.sel(lon=lons).mean('lon') * 86400.).plot.contourf(x='xofyear',
                                                           y='lat',
                                                           levels=np.arange(
                                                               -12., 13., 2.),
                                                           ax=ax6,
                                                           extend='both',
                                                           add_labels=False)
    ax6.set_ylim(-60, 60)
    ax6.set_yticks(np.arange(-60, 61, 30))
    ax6.set_xticks(tickspace)
    ax6.set_xticklabels(labels, rotation=25)
    ax6.grid(True, linestyle=':')
    ax6.set_title('Absolute vorticity', fontsize=17)
    ax6.text(-7, 60, 'f)')

    plt.subplots_adjust(right=0.97,
                        left=0.08,
                        top=0.93,
                        bottom=0.1,
                        hspace=0.25,
                        wspace=0.15)

    if lonin == [-1., 361.]:
        figname = 'vort_breakdown_' + run + '.pdf'
    else:
        figname = 'vort_breakdown_' + run + '_' + str(int(
            lonin[0])) + '_' + str(int(lonin[1])) + '.pdf'

    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #16
0
def vort_eq_hm(run, lev=150, lonin=[-1., 361.]):

    rcParams['figure.figsize'] = 10, 7.5
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/vort_schematic/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #Load in vorticity budget term means
    data_vort = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/vort_eq_' + run + '.nc')
    data_vort = data_vort * 86400.**2.  #Convert to day^-2

    print 'vorticity budget data loaded'

    #Also load climatological data so that transient eddies can be calculated
    data = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/vort_eq_uv' + run + '.nc')
    print 'climatology loaded'

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    # Calculate vertical component of absolute vorticity = f + dv/dx - du/dy
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    v_dx = gr.ddx(data.vcomp)  # dvdx
    u_dy = gr.ddy(data.ucomp)  # dudy
    vor = v_dx - u_dy + f

    abs_vort = vor.sel(lon=lons).mean('lon') * 86400.

    dvordx = gr.ddx(vor)
    dvordy = gr.ddy(vor, vector=False)

    horiz_md_mean = -86400.**2. * (data.ucomp * dvordx + data.vcomp * dvordy)

    div = gr.ddx(data.ucomp) + gr.ddy(data.vcomp)
    stretching_mean = -86400.**2. * vor * div

    transient = data_vort.horiz_md.sel(
        pfull=lev).values + data_vort.stretching.sel(
            pfull=lev).values - horiz_md_mean.values - stretching_mean.values

    data_vort['transient'] = (('pentad', 'lat', 'lon'), transient)

    horiz_md_hm = horiz_md_mean.sel(lon=lons).mean('lon')
    stretching_hm = stretching_mean.sel(lon=lons).mean('lon')
    transient_hm = data_vort.transient.sel(lon=lons).mean('lon')
    total_hm = data_vort.total.sel(pfull=lev, lon=lons).mean('lon')

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]
    levels = np.arange(-1.5, 1.6, 0.1)

    print 'starting plotting'

    # Four subplots
    f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,
                                               2,
                                               sharex='col',
                                               sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f2 = horiz_md_hm.plot.contourf(x='xofyear',
                                   y='lat',
                                   levels=levels,
                                   ax=ax1,
                                   extend='both',
                                   add_labels=False,
                                   add_colorbar=False)
    ax1.contour(data.xofyear,
                data.lat,
                abs_vort.T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60, 60)
    ax1.set_yticks(np.arange(-60, 61, 30))
    ax1.grid(True, linestyle=':')
    ax1.text(-10, 60, 'a)')

    #Second plot
    stretching_hm.plot.contourf(x='xofyear',
                                y='lat',
                                levels=levels,
                                ax=ax2,
                                extend='both',
                                add_labels=False,
                                add_colorbar=False)
    ax2.contour(data.xofyear,
                data.lat,
                abs_vort.T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax2.set_ylim(-60, 60)
    ax2.set_yticks(np.arange(-60, 61, 30))
    ax2.grid(True, linestyle=':')
    ax2.text(-5, 60, 'b)')

    #Third plot
    transient_hm.plot.contourf(x='pentad',
                               y='lat',
                               levels=levels,
                               ax=ax3,
                               extend='both',
                               add_labels=False,
                               add_colorbar=False)
    ax3.contour(data.xofyear,
                data.lat,
                abs_vort.T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax3.set_ylabel('Latitude')
    ax3.set_ylim(-60, 60)
    ax3.set_yticks(np.arange(-60, 61, 30))
    ax3.set_xticks(tickspace)
    ax3.set_xticklabels(labels, rotation=25)
    ax3.grid(True, linestyle=':')
    ax3.text(-10, 60, 'c)')

    #Fourth plot
    total_hm.plot.contourf(x='pentad',
                           y='lat',
                           levels=levels,
                           ax=ax4,
                           extend='both',
                           add_labels=False,
                           add_colorbar=False)
    ax4.contour(data.xofyear,
                data.lat,
                abs_vort.T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax4.set_ylim(-60, 60)
    ax4.set_yticks(np.arange(-60, 61, 30))
    ax4.set_xticks(tickspace)
    ax4.set_xticklabels(labels, rotation=25)
    ax4.grid(True, linestyle=':')
    ax4.text(-5, 60, 'd)')

    plt.subplots_adjust(right=0.97,
                        left=0.1,
                        top=0.95,
                        bottom=0.,
                        hspace=0.2,
                        wspace=0.1)
    #Colorbar
    cb1 = f.colorbar(f2,
                     ax=[ax1, ax2, ax3, ax4],
                     use_gridspec=True,
                     orientation='horizontal',
                     fraction=0.15,
                     pad=0.1,
                     aspect=30,
                     shrink=0.5)
    cb1.set_label('Vorticity tendency, day$^{-2}$')

    if lonin == [-1., 361.]:
        figname = 'vort_budg_hm_' + run + '.pdf'
    else:
        figname = 'vort_budg_hm_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'

    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #17
0
def mom_budg_hm(run,
                months,
                lev=150,
                filename='plev_pentad',
                timeav='pentad',
                period_fac=1.,
                lonin=[-1., 361.]):

    rcParams['figure.figsize'] = 12, 10
    #rcParams['figure.figsize'] = 18, 10
    rcParams['font.size'] = 25
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #data = time_means(run, months, filename=filename, timeav=timeav,period_fac=period_fac)
    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/' + run +
                           '.nc')

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    #advective terms
    partition_advection(data, lons, lev=150)

    #Coriolis
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    fv = data.vcomp.sel(pfull=lev) * f * 86400.
    fv = fv.sel(lon=lons).mean('lon')

    #Geopotential gradient
    dphidx = gr.ddx(data.height.sel(pfull=lev))
    dphidx = -86400. * 9.8 * dphidx.sel(lon=lons).mean('lon')

    mom_mean = data.u_dudx_zav + data.v_dudy_zav + data.w_dudp_zav
    mom_trans = data.uu_trans_dx + data.uv_trans_dy + data.uw_trans_dp
    mom_stat = data.u_dudx_stat + data.v_dudy_stat + data.w_dudp_stat

    mom_sum = fv + dphidx + mom_mean + mom_trans + mom_stat

    levels = np.arange(-10, 10.1, 2.)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    # Six subplots
    fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2,
                                                           3,
                                                           sharex='col',
                                                           sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f1 = fv.plot.contourf(ax=ax1,
                          x='xofyear',
                          y='lat',
                          extend='both',
                          levels=levels,
                          add_colorbar=False,
                          add_labels=False)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60, 60)
    ax1.grid(True, linestyle=':')

    #Second plot
    mom_mean.plot.contourf(ax=ax2,
                           x='xofyear',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_colorbar=False,
                           add_labels=False)
    ax2.grid(True, linestyle=':')
    ax2.set_ylim(-60, 60)

    #Third plot
    dphidx.plot.contourf(ax=ax3,
                         x='xofyear',
                         y='lat',
                         extend='both',
                         levels=levels,
                         add_colorbar=False,
                         add_labels=False)
    ax3.grid(True, linestyle=':')
    ax3.set_ylim(-60, 60)

    #Fourth plot
    mom_trans.plot.contourf(ax=ax4,
                            x='xofyear',
                            y='lat',
                            extend='both',
                            levels=levels,
                            add_colorbar=False,
                            add_labels=False)
    ax4.grid(True, linestyle=':')
    ax4.set_ylabel('Latitude')
    ax4.set_xticks(tickspace)
    ax4.set_xticklabels(labels, rotation=25)
    ax4.set_ylim(-60, 60)

    #Fifth plot
    mom_stat.plot.contourf(ax=ax5,
                           x='xofyear',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_colorbar=False,
                           add_labels=False)
    ax5.grid(True, linestyle=':')
    ax5.set_xticks(tickspace)
    ax5.set_xticklabels(labels, rotation=25)
    ax5.set_ylim(-60, 60)

    #Sixth plot
    mom_sum.plot.contourf(ax=ax6,
                          x='xofyear',
                          y='lat',
                          extend='both',
                          levels=levels,
                          add_colorbar=False,
                          add_labels=False)
    ax6.grid(True, linestyle=':')
    ax6.set_xticks(tickspace)
    ax6.set_xticklabels(labels, rotation=25)
    ax6.set_ylim(-60, 60)

    plt.subplots_adjust(right=0.97,
                        left=0.1,
                        top=0.95,
                        bottom=0.,
                        hspace=0.3,
                        wspace=0.1)
    #Colorbar
    cb1 = fig.colorbar(f1,
                       ax=[ax1, ax2, ax3, ax4, ax5, ax6],
                       use_gridspec=True,
                       orientation='horizontal',
                       fraction=0.15,
                       pad=0.1,
                       aspect=30)
    #cb1=fig.colorbar(f1, ax=[ax1,ax2,ax3,ax4,ax5,ax6], use_gridspec=True,fraction=0.15, aspect=30)
    cb1.set_label('$ms^{-1}day^{-1}$')

    if lonin == [-1., 361.]:
        figname = 'zon_mom_budg.pdf'
    else:
        figname = 'zon_mom_budg_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'

    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
def mom_budg_hm(run, lev=150, lonin=[-1., 361.]):
    #NB run is a dummy variable

    rcParams['figure.figsize'] = 12, 8
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/paper_1_figs/revisions/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    data = xr.open_dataset('/scratch/rg419/obs_and_reanalysis/era_mom_vars.nc')

    # Take pentad means
    data.coords['pentad'] = data.day_of_yr // 5 + 1.
    data = data.groupby('pentad').mean(('day_of_yr'))

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    #advective terms
    partition_advection(data, lons, lev=150)

    #Coriolis
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    fv = data.vcomp * f * 86400.
    fv_mean = fv.mean('lon')
    fv_local = (fv - fv_mean).sel(lon=lons).mean('lon')

    #Geopotential gradient
    dphidx = gr.ddx(data.phi)
    dphidx = -86400. * dphidx.sel(lon=lons).mean('lon')
    fv_ageo = fv_local + dphidx

    mom_mean = data.u_dudx_zav + data.v_dudy_zav + data.w_dudp_zav
    mom_cross = data.u_dudx_cross1 + data.v_dudy_cross1 + data.w_dudp_cross1 + data.u_dudx_cross2 + data.v_dudy_cross2 + data.w_dudp_cross2
    mom_cross1 = data.u_dudx_cross1 + data.v_dudy_cross1 + data.w_dudp_cross1
    mom_cross2 = data.u_dudx_cross2 + data.v_dudy_cross2 + data.w_dudp_cross2
    mom_trans = data.uu_trans_dx + data.uv_trans_dy + data.uw_trans_dp
    mom_stat = data.u_dudx_stat + data.v_dudy_stat + data.w_dudp_stat

    mom_crossu = data.u_dudx_cross1 + data.u_dudx_cross2
    mom_crossv = data.v_dudy_cross1 + data.v_dudy_cross2
    mom_crossw = data.w_dudp_cross1 + data.w_dudp_cross2

    #data.w_dudp_cross1.plot.contourf(x='pentad', y='lat', extend='both',levels = np.arange(-20,21.1,2.))
    #plt.yticks(np.arange(-60.,61.,30.))
    #plt.ylim(-60,60)

    #plt.figure(2)
    #data.w_dudp_cross2.plot.contourf(x='pentad', y='lat', extend='both',levels = np.arange(-20,21.1,2.))
    #plt.ylim(-60,60)
    #plt.yticks(np.arange(-60.,61.,30.))

    #plt.show()

    #print mom_stat

    mom_sum = fv_local + fv_mean + dphidx + mom_mean + mom_trans + mom_stat + mom_cross

    levels = np.arange(-20, 21.1, 2.)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    # Six subplots
    fig, ((ax1, ax2, ax3), (ax4, ax5, ax6), (ax7, ax8,
                                             ax9)) = plt.subplots(3,
                                                                  3,
                                                                  sharex='col',
                                                                  sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f1 = fv_mean.plot.contourf(ax=ax1,
                               x='pentad',
                               y='lat',
                               extend='both',
                               levels=levels,
                               add_colorbar=False,
                               add_labels=False)
    ax1.set_ylabel('Latitude')
    ax1.set_title('Zonal mean Coriolis', fontsize=17)
    ax1.set_ylim(-60, 60)
    ax1.grid(True, linestyle=':')
    ax1.set_yticks(np.arange(-60., 61., 30.))
    ax1.text(-15, 60, 'a)')

    #Second plot
    mom_mean.plot.contourf(ax=ax2,
                           x='pentad',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_colorbar=False,
                           add_labels=False)
    ax2.grid(True, linestyle=':')
    ax2.set_title('Mean state advection', fontsize=17)
    ax2.set_ylim(-60, 60)
    ax2.text(-5, 60, 'b)')

    #Third plot
    mom_sum.plot.contourf(ax=ax3,
                          x='pentad',
                          y='lat',
                          extend='both',
                          levels=levels,
                          add_colorbar=False,
                          add_labels=False)
    ax3.grid(True, linestyle=':')
    ax3.set_ylim(-60, 60)
    ax3.set_title('Residual', fontsize=17)
    ax3.text(-5, 60, 'c)')

    #Fourth plot
    mom_trans.plot.contourf(ax=ax4,
                            x='pentad',
                            y='lat',
                            extend='both',
                            levels=levels,
                            add_colorbar=False,
                            add_labels=False)
    ax4.grid(True, linestyle=':')
    ax4.set_ylabel('Latitude')
    ax4.set_ylim(-60, 60)
    ax4.set_title('Transient eddy flux conv.', fontsize=17)
    ax4.set_yticks(np.arange(-60., 61., 30.))
    ax4.text(-15, 60, 'd)')

    #Fifth plot
    mom_stat.plot.contourf(ax=ax5,
                           x='pentad',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_colorbar=False,
                           add_labels=False)
    ax5.grid(True, linestyle=':')
    ax5.set_title('Stat. eddy flux conv.', fontsize=17)
    ax5.set_ylim(-60, 60)
    ax5.text(-5, 60, 'e)')

    #Sixth plot
    mom_cross.plot.contourf(ax=ax6,
                            x='pentad',
                            y='lat',
                            extend='both',
                            levels=levels,
                            add_colorbar=False,
                            add_labels=False)
    ax6.grid(True, linestyle=':')
    ax6.set_ylim(-60, 60)
    ax6.set_title('Stat. eddy cross terms', fontsize=17)
    ax6.text(-5, 60, 'f)')

    #Fourth plot
    dphidx.plot.contourf(ax=ax7,
                         x='pentad',
                         y='lat',
                         extend='both',
                         levels=levels,
                         add_colorbar=False,
                         add_labels=False)
    ax7.grid(True, linestyle=':')
    ax7.set_ylabel('Latitude')
    ax7.set_xticks(tickspace)
    ax7.set_xticklabels(labels, rotation=25)
    ax7.set_ylim(-60, 60)
    ax7.set_title('Geopotential gradient', fontsize=17)
    ax7.set_yticks(np.arange(-60., 61., 30.))
    ax7.text(-15, 60, 'g)')

    #Fifth plot
    fv_local.plot.contourf(ax=ax8,
                           x='pentad',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_colorbar=False,
                           add_labels=False)
    ax8.grid(True, linestyle=':')
    ax8.set_xticks(tickspace)
    ax8.set_xticklabels(labels, rotation=25)
    ax8.set_title('Stat. eddy Coriolis', fontsize=17)
    ax8.set_ylim(-60, 60)
    ax8.text(-5, 60, 'h)')

    #Sixth plot
    fv_ageo.plot.contourf(ax=ax9,
                          x='pentad',
                          y='lat',
                          extend='both',
                          levels=levels,
                          add_colorbar=False,
                          add_labels=False)
    ax9.grid(True, linestyle=':')
    ax9.set_xticks(tickspace)
    ax9.set_xticklabels(labels, rotation=25)
    ax9.set_ylim(-60, 60)
    ax9.set_title('Ageostrophic stat. eddy Coriolis', fontsize=17)
    ax9.text(-5, 60, 'i)')

    plt.subplots_adjust(right=0.97,
                        left=0.1,
                        top=0.95,
                        bottom=0.,
                        hspace=0.25,
                        wspace=0.12)
    #Colorbar
    cb1 = fig.colorbar(f1,
                       ax=[ax1, ax2, ax3, ax4, ax5, ax6, ax7, ax8, ax9],
                       use_gridspec=True,
                       orientation='horizontal',
                       fraction=0.15,
                       pad=0.15,
                       aspect=30,
                       shrink=0.5)
    #cb1=fig.colorbar(f1, ax=[ax1,ax2,ax3,ax4,ax5,ax6], use_gridspec=True,fraction=0.15, aspect=30)
    #cb1.set_label('$ms^{-1}day^{-1}$')

    if lonin == [-1., 361.]:
        figname = 'zon_mom_budg_era.pdf'
    else:
        figname = 'zon_mom_budg_era_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'

    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #19
0
def energy_eq_hm(run,
                 lev=150,
                 lonin=[-1., 361.],
                 levels=np.arange(-0.01, 0.011, 0.001)):

    rcParams['figure.figsize'] = 10, 9
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #Load in energy budget term means
    data = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/energy_eq_' + run + '.nc')

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    pe_to_ke_hm = data.pe_to_ke.sel(pfull=lev, lon=lons).mean('lon')
    conv_1_hm = data.conv_1.sel(pfull=lev, lon=lons).mean('lon')
    conv_2_hm = data.conv_2.sel(pfull=lev, lon=lons).mean('lon')
    conv_3_hm = data.conv_3.sel(pfull=lev, lon=lons).mean('lon')

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    # Four subplots
    f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,
                                               2,
                                               sharex='col',
                                               sharey='row')
    plt.set_cmap('RdBu_r')

    #First plot
    f2 = pe_to_ke_hm.plot.contourf(x='pentad',
                                   y='lat',
                                   levels=levels,
                                   ax=ax1,
                                   extend='both',
                                   add_labels=False,
                                   add_colorbar=False)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60, 60)
    ax1.grid(True, linestyle=':')

    #Second plot
    conv_1_hm.plot.contourf(x='pentad',
                            y='lat',
                            levels=levels,
                            ax=ax2,
                            extend='both',
                            add_labels=False,
                            add_colorbar=False)
    ax2.set_ylim(-60, 60)
    ax2.grid(True, linestyle=':')

    #Third plot
    conv_3_hm.plot.contourf(x='pentad',
                            y='lat',
                            levels=levels,
                            ax=ax3,
                            extend='both',
                            add_labels=False,
                            add_colorbar=False)
    ax3.set_ylabel('Latitude')
    ax3.set_ylim(-60, 60)
    ax3.set_xticks(tickspace)
    ax3.set_xticklabels(labels, rotation=25)
    ax3.grid(True, linestyle=':')

    #Fourth plot
    conv_2_hm.plot.contourf(x='pentad',
                            y='lat',
                            levels=levels,
                            ax=ax4,
                            extend='both',
                            add_labels=False,
                            add_colorbar=False)
    ax4.set_ylim(-60, 60)
    ax4.set_xticks(tickspace)
    ax4.set_xticklabels(labels, rotation=25)
    ax4.grid(True, linestyle=':')

    plt.subplots_adjust(right=0.97,
                        left=0.1,
                        top=0.95,
                        bottom=0.,
                        hspace=0.3,
                        wspace=0.1)
    #Colorbar
    cb1 = f.colorbar(f2,
                     ax=[ax1, ax2, ax3, ax4],
                     use_gridspec=True,
                     orientation='horizontal',
                     fraction=0.15,
                     pad=0.1,
                     aspect=30,
                     shrink=0.9)
    cb1.set_label('Energy conversion, J/s')

    if lonin == [-1., 361.]:
        figname = 'energy_budg_hm_' + str(int(lev)) + '.pdf'
    else:
        figname = 'energy_budg_hm_' + str(int(lev)) + '_' + str(int(
            lonin[0])) + '_' + str(int(lonin[1])) + '.pdf'

    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #20
0
def abs_vort_hm(run, lev=150, filename='plev_pentad', timeav='pentad', period_fac=1.,lonin=[-1.,361.]):
    
    rcParams['figure.figsize'] = 10, 15
    rcParams['font.size'] = 25
    rcParams['text.usetex'] = True
    
    plot_dir = '/scratch/rg419/plots/clean_diags/'+run+'/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)
        
    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/'+run+'.nc')
    
    if lonin[1]>lonin[0]:
        lons = [data.lon[i] for i in range(len(data.lon)) if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]]
    else:
        lons = [data.lon[i] for i in range(len(data.lon)) if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]]
    
    
    #Coriolis
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat *np.pi/180)
    
    abs_vort = (f + data.vor.sel(pfull=lev))*86400.
    
    abs_vort_zmean = abs_vort.sel(lon=lons).mean('lon')
    
    abs_vort_min = abs_vort
    abs_vort_min[0:32,:,:] = -1.*abs_vort_min[0:32,:,:]
    abs_vort_min = abs_vort_min.sel(lon=lons).min('lon')
    abs_vort_min[0:32,:] = -1.*abs_vort_min[0:32,:]
    
    
    levels = np.arange(-20.,20.1,2.)
    
    mn_dic = month_dic(1)
    tickspace = range(13,72,18)
    labels = [mn_dic[(k+5)/6 ] for k in tickspace]
    
    # Two subplots
    fig, (ax1, ax2) = plt.subplots(2, sharex=True)
    plt.set_cmap('RdBu_r')
    #First plot
    f1=abs_vort_zmean.plot.contourf(ax=ax1, x='xofyear', y='lat', extend='both', levels=levels, add_colorbar=False, add_labels=False)
    abs_vort_zmean.plot.contour(ax=ax1, x='xofyear', y='lat', extend='both', levels=[-1000.,0.,1000.], add_colorbar=False, add_labels=False)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60,60)

    ax1.grid(True,linestyle=':')
    
    #Second plot
    abs_vort_min.plot.contourf(ax=ax2, x='xofyear', y='lat', extend='both', levels=levels, add_colorbar=False, add_labels=False)
    abs_vort_min.plot.contour(ax=ax2, x='xofyear', y='lat', extend='both', levels=[-1000.,0.,1000.], add_colorbar=False, add_labels=False)
    ax2.grid(True,linestyle=':')
    ax2.set_xticks(tickspace)
    ax2.set_xticklabels(labels,rotation=25)
    ax1.set_ylabel('Latitude')
    ax2.set_ylim(-60,60)

    
    plt.subplots_adjust(right=0.95, top=0.95, bottom=0., hspace=0.1)
    #Colorbar
    cb1=fig.colorbar(f1, ax=[ax1,ax2], use_gridspec=True, orientation = 'horizontal',fraction=0.15, pad=0.1, aspect=30)
    cb1.set_label('$day^{-1}$')
    
    if lonin == [-1.,361.]:
        figname = 'abs_vort.pdf'
    else:
        figname = 'abs_vort_' + str(int(lonin[0]))+ '_' + str(int(lonin[1])) + '.pdf'
    
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #21
0
def mom_budg_hm(run,
                lev=150,
                filename='plev_pentad',
                timeav='pentad',
                period_fac=1.,
                lonin=[-1., 361.]):

    a = 6376.0e3

    rcParams['figure.figsize'] = 12, 5.5
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/itcz_theory_testing/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/' + run +
                           '.nc')

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    #advective terms
    partition_advection(data, lons, lev=150)

    #Coriolis
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180.)
    fu = -1. * data.ucomp.sel(pfull=lev) * f * 86400.
    fu = fu.sel(lon=lons).mean('lon')

    metric_term = (-86400. * data.ucomp.sel(pfull=lev) *
                   data.ucomp.sel(pfull=lev) *
                   np.tan(data.lat * np.pi / 180.) / a).mean('lon')

    #totp = ((data.convection_rain + data.condensation_rain)*86400.).sel(lon=lons).mean('lon')
    #abs_vort = (data.vor + f).sel(lon=lons).mean('lon')*86400.

    #Geopotential gradient
    dphidy = gr.ddy(data.height.sel(pfull=lev), vector=False)
    dphidy = -86400. * 9.8 * dphidy.sel(lon=lons).mean('lon')

    mom_mean = data.v_dvdy_zav + data.w_dvdp_zav
    mom_trans = data.vv_trans_dy + data.vw_trans_dp
    mom_stat = data.v_dvdy_stat + data.w_dvdp_stat

    mom_sum = mom_mean + mom_trans + mom_stat + fu + dphidy + metric_term

    resid = -(fu + dphidy + metric_term)

    levels = np.arange(-10., 10.1, 1.)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    resid.plot.contourf(x='xofyear',
                        y='lat',
                        extend='both',
                        levels=levels,
                        add_labels=False)
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.xticks(tickspace, labels, rotation=25)
    plt.yticks(np.arange(-60., 61., 30.))
    plt.grid(True, linestyle=':')
    plt.tight_layout()
    plt.savefig(plot_dir + 'residual.pdf')
    plt.close()

    mom_mean.plot.contourf(x='xofyear',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_labels=False)
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.xticks(tickspace, labels, rotation=25)
    plt.yticks(np.arange(-60., 61., 30.))
    plt.grid(True, linestyle=':')
    plt.tight_layout()
    plt.savefig(plot_dir + 'mom_mean.pdf')
    plt.close()
def vort_eq_hm(run, lev=150, rotfac=1.0, period_fac=1.):

    rcParams['figure.figsize'] = 10, 7.5
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/crit_lat_test/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #Load in vorticity budget term means
    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/vort_eq_' +
                           run + '.nc')
    print 'vorticity budget data loaded'

    # Calculate vertical component of absolute vorticity = f + dv/dx - du/dy
    omega = 7.2921150e-5 * rotfac
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    v_dx = gr.ddx(data.vcomp)  # dvdx
    u_dy = gr.ddy(data.ucomp)  # dudy
    vor = v_dx - u_dy + f

    abs_vort = vor.mean('lon') * 86400.

    dvordx = gr.ddx(vor)
    dvordy = gr.ddy(vor, vector=False)

    horiz_md_mean = -86400.**2. * (data.ucomp * dvordx + data.vcomp * dvordy)

    div = gr.ddx(data.ucomp) + gr.ddy(data.vcomp)
    stretching_mean = -86400.**2. * vor * div

    transient = 86400.**2. * data.horiz_md + 86400.**2. * data.stretching - horiz_md_mean - stretching_mean

    data['transient'] = (('pentad', 'pfull', 'lat', 'lon'), transient.values)

    horiz_md_hm = horiz_md_mean.mean('lon')
    stretching_hm = stretching_mean.mean('lon')
    transient_hm = data.transient.mean('lon')
    total_hm = data.total.sel(pfull=lev).mean('lon')

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]
    levels = np.arange(-1.5, 1.6, 0.25)

    print 'starting plotting'

    # Four subplots
    f, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2,
                                               2,
                                               sharex='col',
                                               sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f2 = horiz_md_hm.sel(pfull=lev).plot.contourf(x='pentad',
                                                  y='lat',
                                                  levels=levels,
                                                  ax=ax1,
                                                  extend='both',
                                                  add_labels=False,
                                                  add_colorbar=False)
    ax1.contour(data.pentad,
                data.lat,
                abs_vort.sel(pfull=lev).T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60, 60)
    ax1.set_yticks(np.arange(-60, 61, 30))
    ax1.grid(True, linestyle=':')
    ax1.text(-10, 60, 'a)')

    #Second plot
    stretching_hm.sel(pfull=lev).plot.contourf(x='pentad',
                                               y='lat',
                                               levels=levels,
                                               ax=ax2,
                                               extend='both',
                                               add_labels=False,
                                               add_colorbar=False)
    ax2.contour(data.pentad,
                data.lat,
                abs_vort.sel(pfull=lev).T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax2.set_ylim(-60, 60)
    ax2.set_yticks(np.arange(-60, 61, 30))
    ax2.grid(True, linestyle=':')
    ax2.text(-5, 60, 'b)')

    #Third plot
    transient_hm.sel(pfull=lev).plot.contourf(x='pentad',
                                              y='lat',
                                              levels=levels,
                                              ax=ax3,
                                              extend='both',
                                              add_labels=False,
                                              add_colorbar=False)
    ax3.contour(data.pentad,
                data.lat,
                abs_vort.sel(pfull=lev).T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax3.set_ylabel('Latitude')
    ax3.set_ylim(-60, 60)
    ax3.set_yticks(np.arange(-60, 61, 30))
    ax3.set_xticks(tickspace)
    ax3.set_xticklabels(labels, rotation=25)
    ax3.grid(True, linestyle=':')
    ax3.text(-10, 60, 'c)')

    #Fourth plot
    (horiz_md_hm + stretching_hm).sel(pfull=lev).plot.contourf(
        x='pentad',
        y='lat',
        levels=levels,
        ax=ax4,
        extend='both',
        add_labels=False,
        add_colorbar=False)
    ax4.contour(data.pentad,
                data.lat,
                abs_vort.sel(pfull=lev).T,
                levels=np.arange(-12., 13., 2.),
                colors='k',
                linewidths=2,
                alpha=0.25)
    ax4.set_ylim(-60, 60)
    ax4.set_yticks(np.arange(-60, 61, 30))
    ax4.set_xticks(tickspace)
    ax4.set_xticklabels(labels, rotation=25)
    ax4.grid(True, linestyle=':')
    ax4.text(-5, 60, 'd)')

    plt.subplots_adjust(right=0.97,
                        left=0.1,
                        top=0.95,
                        bottom=0.,
                        hspace=0.2,
                        wspace=0.1)
    #Colorbar
    cb1 = f.colorbar(f2,
                     ax=[ax1, ax2, ax3, ax4],
                     use_gridspec=True,
                     orientation='horizontal',
                     fraction=0.15,
                     pad=0.1,
                     aspect=30,
                     shrink=0.5)
    cb1.set_label('Vorticity tendency, day$^{-2}$')

    figname = 'vort_budg_hm_balance' + run + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #23
0
def abs_vort_hm(run,
                lev=150,
                filename='plev_daily',
                timeav='pentad',
                period_fac=1.,
                latin=25.):

    rcParams['figure.figsize'] = 9, 9
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    name_temp = '/scratch/rg419/Data_moist/' + run + '/run%03d/' + filename + '.nc'
    names = [name_temp % m for m in range(397, 409)]

    #read data into xarray
    data = xr.open_mfdataset(
        names,
        decode_times=False,  # no calendar so tell netcdf lib
        # choose how data will be broken down into manageable chunks.
        chunks={'time': 30})

    uwnd = data.ucomp.sel(pfull=lev)
    vwnd = data.vcomp.sel(pfull=lev)

    # Create a VectorWind instance to handle the computation of streamfunction and
    # velocity potential.
    w = VectorWind(uwnd, vwnd)

    # Compute the streamfunction and velocity potential.
    data['vor'], data['div'] = w.vrtdiv()

    #data = xr.open_dataset('/scratch/rg419/Data_moist/'+run+'climatologies/'+run+'.nc')

    #Coriolis
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)

    lat_hm = data.lat[np.argmin(np.abs(data.lat - latin))]

    abs_vort = (f + data.vor).sel(lat=lat_hm) * 86400.

    levels = np.arange(0., 14.1, 2.)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    # Plot
    f1 = abs_vort.plot.contourf(x='lon',
                                y='time',
                                extend='both',
                                levels=levels,
                                add_colorbar=False,
                                add_labels=False)
    plt.set_cmap('inferno_r')
    plt.ylabel('Time')
    #plt.yticks(tickspace, labels, rotation=25)
    plt.xlabel('Longitude')
    plt.xlim(60, 150)
    plt.ylim(240 + 33 * 360, 90 + 33 * 360)
    plt.grid(True, linestyle=':')
    plt.tight_layout()
    #Colorbar
    cb1 = plt.colorbar(f1,
                       use_gridspec=True,
                       orientation='horizontal',
                       fraction=0.15,
                       pad=0.1,
                       aspect=30)
    cb1.set_label('$day^{-1}$')

    figname = 'abs_vort_lon_hm.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
def mom_budg_latlon(run, t, lev=150, land=False, lonin=[-1., 361.]):

    rcParams['figure.figsize'] = 15, 10
    rcParams['font.size'] = 25
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/' + run +
                           '.nc')

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    if land:
        land_data = xr.open_dataset(
            '/scratch/rg419/GFDL_model/GFDLmoistModel/input/land.nc')

    t_dates = data.xofyear[t:t + 4]

    data_tmean = data.sel(xofyear=t_dates).mean('xofyear')

    #advective terms
    partition_advection(data_tmean, lons=lons, lev=lev)

    #Coriolis
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    fv = data_tmean.vcomp.sel(pfull=lev) * f * 86400.

    #Geopotential gradient
    dphidx = gr.ddx(data_tmean.height.sel(pfull=lev))
    dphidx = -86400. * 9.8 * dphidx

    mom_mean = data_tmean.u_dudx_zav + data_tmean.v_dudy_zav + data_tmean.w_dudp_zav
    mom_trans = data_tmean.uu_trans_dx + data_tmean.uv_trans_dy + data_tmean.uw_trans_dp
    mom_stat = data_tmean.u_dudx_stat + data_tmean.v_dudy_stat + data_tmean.w_dudp_stat

    mom_sum = fv + dphidx + mom_mean + mom_trans + mom_stat

    mom_mean = xr.DataArray(np.rollaxis(np.tile(mom_mean, [128, 1]), 1),
                            mom_stat.coords)

    levels = np.arange(-30, 30.1, 5.)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    # Six subplots
    fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2,
                                                           3,
                                                           sharex='col',
                                                           sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f1 = fv.plot.contourf(ax=ax1,
                          x='lon',
                          y='lat',
                          extend='both',
                          levels=levels,
                          add_colorbar=False,
                          add_labels=False)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60, 60)
    ax1.set_xlim(60, 150)
    ax1.grid(True, linestyle=':')

    #Second plot
    mom_mean.plot.contourf(ax=ax2,
                           x='lon',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_colorbar=False,
                           add_labels=False)
    ax2.grid(True, linestyle=':')
    ax2.set_ylim(-60, 60)
    ax2.set_xlim(60, 150)

    #Third plot
    dphidx.plot.contourf(ax=ax3,
                         x='lon',
                         y='lat',
                         extend='both',
                         levels=levels,
                         add_colorbar=False,
                         add_labels=False)
    ax3.grid(True, linestyle=':')
    ax3.set_ylim(-60, 60)
    ax3.set_xlim(60, 150)

    #Fourth plot
    mom_trans.plot.contourf(ax=ax4,
                            x='lon',
                            y='lat',
                            extend='both',
                            levels=levels,
                            add_colorbar=False,
                            add_labels=False)
    ax4.grid(True, linestyle=':')
    ax4.set_ylabel('Latitude')
    ax4.set_xlabel('Longitude')
    ax4.set_ylim(-60, 60)
    ax4.set_xlim(60, 150)
    ax4.set_xticks(range(60, 151, 15))

    #Fifth plot
    mom_stat.plot.contourf(ax=ax5,
                           x='lon',
                           y='lat',
                           extend='both',
                           levels=levels,
                           add_colorbar=False,
                           add_labels=False)
    ax5.grid(True, linestyle=':')
    ax4.set_xlabel('Longitude')
    ax5.set_ylim(-60, 60)
    ax5.set_xlim(60, 150)
    ax5.set_xticks(range(60, 151, 15))

    #Sixth plot
    mom_sum.plot.contourf(ax=ax6,
                          x='lon',
                          y='lat',
                          extend='both',
                          levels=levels,
                          add_colorbar=False,
                          add_labels=False)
    ax6.grid(True, linestyle=':')
    ax4.set_xlabel('Longitude')
    ax6.set_ylim(-60, 60)
    ax6.set_xlim(60, 150)
    ax6.set_xticks(range(60, 151, 15))

    if land:
        for ax in [ax1, ax2, ax3, ax4, ax5, ax6]:
            land_data.land_mask.plot.contour(x='lon',
                                             y='lat',
                                             ax=ax,
                                             colors='w',
                                             levels=range(-1000, 1002, 1000),
                                             add_labels=False,
                                             add_colorbar=False)

    plt.subplots_adjust(right=0.95, top=0.95, bottom=0., hspace=0.1)
    #Colorbar
    cb1 = fig.colorbar(f1,
                       ax=[ax1, ax2, ax3, ax4, ax5, ax6],
                       use_gridspec=True,
                       orientation='horizontal',
                       fraction=0.15,
                       pad=0.1,
                       aspect=30)
    cb1.set_label('$ms^{-1}day^{-1}$')

    figname = 'zon_mom_budg_ll_' + str(t) + '.pdf'

    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #25
0
def mom_budg_hm(run, lev=150, filename='plev_pentad', timeav='pentad', period_fac=1.,lonin=[-1.,361.]):
    
    rcParams['figure.figsize'] = 12, 5.5
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True
    
    plot_dir = '/scratch/rg419/plots/paper_1_figs/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)
        
    data = xr.open_dataset('/scratch/rg419/Data_moist/climatologies/'+run+'.nc')
    
    if lonin[1]>lonin[0]:
        lons = [data.lon[i] for i in range(len(data.lon)) if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]]
    else:
        lons = [data.lon[i] for i in range(len(data.lon)) if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]]
    
    #advective terms
    partition_advection(data, lons, lev=150)
    
    #Coriolis
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat *np.pi/180)
    fv = data.vcomp.sel(pfull=lev) * f * 86400.
    fv = fv.sel(lon=lons).mean('lon')
    
    totp = ((data.convection_rain + data.condensation_rain)*86400.).sel(lon=lons).mean('lon')
    abs_vort = (data.vor + f).sel(lon=lons).mean('lon')*86400.
    
    #Geopotential gradient
    dphidx = gr.ddx(data.height.sel(pfull=lev))
    dphidx = -86400. * 9.8 * dphidx.sel(lon=lons).mean('lon')
        
    mom_mean = data.u_dudx_zav + data.v_dudy_zav + data.w_dudp_zav
    mom_trans = data.uu_trans_dx + data.uv_trans_dy + data.uw_trans_dp
    mom_stat = data.u_dudx_stat + data.v_dudy_stat + data.w_dudp_stat
    
    mom_sum = fv + dphidx + mom_mean + mom_trans + mom_stat
    
    levels = np.arange(-21,21.1,3.)
    
    mn_dic = month_dic(1)
    tickspace = range(13,72,18)
    labels = [mn_dic[(k+5)/6 ] for k in tickspace]
    
    # Six subplots
    fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, sharex='col', sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f1=fv.plot.contourf(ax=ax1, x='xofyear', y='lat', extend='both', levels = levels, add_colorbar=False, add_labels=False)
    totp.plot.contour(ax=ax1, x='xofyear', y='lat', extend='both', levels=np.arange(-92.,109.,100.), add_colorbar=False, add_labels=False, alpha=0.25, colors='k', linewidths=2)
    ax1.set_ylabel('Latitude')
    ax1.set_title('Coriolis', fontsize=17)
    ax1.set_ylim(-60,60)
    ax1.grid(True,linestyle=':')
    ax1.set_yticks(np.arange(-60.,61.,30.))
    ax1.text(-15, 60, 'a)')
    
    #Second plot
    mom_mean.plot.contourf(ax=ax2, x='xofyear', y='lat', extend='both', levels = levels, add_colorbar=False, add_labels=False)
    #ax2.contour(data.xofyear, data.lat, abs_vort.sel(pfull=lev).T, levels=np.arange(-12.,13.,2.), colors='k', linewidths=2)
    #abs_vort.sel(pfull=lev).plot.contour(ax=ax2, x='xofyear', y='lat', extend='both', levels=np.arange(-2.,6.,2.), add_colorbar=False, add_labels=False, colors='k', linewidths=2)
    totp.plot.contour(ax=ax2, x='xofyear', y='lat', extend='both', levels=np.arange(-92.,109.,100.), add_colorbar=False, add_labels=False, alpha=0.25, colors='k', linewidths=2)
    ax2.grid(True,linestyle=':')
    ax2.set_title('Mean state advection', fontsize=17)
    ax2.set_ylim(-60,60)
    ax2.text(-5, 60, 'b)')
    
    #Third plot
    dphidx.plot.contourf(ax=ax3, x='xofyear', y='lat', extend='both', levels = levels, add_colorbar=False, add_labels=False)
    totp.plot.contour(ax=ax3, x='xofyear', y='lat', extend='both', levels=np.arange(-92.,109.,100.), add_colorbar=False, add_labels=False, alpha=0.25, colors='k', linewidths=2)
    ax3.grid(True,linestyle=':')
    ax3.set_ylim(-60,60)
    ax3.set_title('Geopotential gradient', fontsize=17)
    ax3.text(-5, 60, 'c)')
    
    #Fourth plot
    mom_trans.plot.contourf(ax=ax4, x='xofyear', y='lat', extend='both', levels = levels, add_colorbar=False, add_labels=False)
    totp.plot.contour(ax=ax4, x='xofyear', y='lat', extend='both', levels=np.arange(-92.,109.,100.), add_colorbar=False, add_labels=False, alpha=0.25, colors='k', linewidths=2)
    ax4.grid(True,linestyle=':')
    ax4.set_ylabel('Latitude')
    ax4.set_xticks(tickspace)
    ax4.set_xticklabels(labels,rotation=25)
    ax4.set_ylim(-60,60)
    ax4.set_title('Transient eddy flux conv.', fontsize=17)
    ax4.set_yticks(np.arange(-60.,61.,30.))
    ax4.text(-15, 60, 'd)')
    
    #Fifth plot
    mom_stat.plot.contourf(ax=ax5, x='xofyear', y='lat', extend='both', levels = levels, add_colorbar=False, add_labels=False)
    totp.plot.contour(ax=ax5, x='xofyear', y='lat', extend='both', levels=np.arange(-92.,109.,100.), add_colorbar=False, add_labels=False, alpha=0.25, colors='k', linewidths=2)
    ax5.grid(True,linestyle=':')
    ax5.set_xticks(tickspace)
    ax5.set_xticklabels(labels,rotation=25)
    ax5.set_title('Stat. eddy flux conv.', fontsize=17)
    ax5.set_ylim(-60,60)
    ax5.text(-5, 60, 'e)')
    
    #Sixth plot
    mom_sum.plot.contourf(ax=ax6, x='xofyear', y='lat', extend='both', levels = levels, add_colorbar=False, add_labels=False)
    totp.plot.contour(ax=ax6, x='xofyear', y='lat', extend='both', levels=np.arange(-92.,109.,100.), add_colorbar=False, add_labels=False, alpha=0.25, colors='k', linewidths=2)
    ax6.grid(True,linestyle=':')
    ax6.set_xticks(tickspace)
    ax6.set_xticklabels(labels,rotation=25)
    ax6.set_ylim(-60,60)
    ax6.set_title('Residual', fontsize=17)
    ax6.text(-5, 60, 'f)')
    
    
    plt.subplots_adjust(right=0.97, left=0.1, top=0.95, bottom=0., hspace=0.25, wspace=0.12)
    #Colorbar
    cb1=fig.colorbar(f1, ax=[ax1,ax2,ax3,ax4,ax5,ax6], use_gridspec=True, orientation = 'horizontal',fraction=0.15, pad=0.15, aspect=30, shrink=0.5)
    #cb1=fig.colorbar(f1, ax=[ax1,ax2,ax3,ax4,ax5,ax6], use_gridspec=True,fraction=0.15, aspect=30)
    #cb1.set_label('$ms^{-1}day^{-1}$')
    
    if lonin == [-1.,361.]:
        figname = 'zon_mom_budg_' +run+ '.pdf'
    else:
        figname = 'zon_mom_budg_' + run + '_' + str(int(lonin[0]))+ '_' + str(int(lonin[1])) + '.pdf'
    
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #26
0
def advection_hm(run,
                 months,
                 lev=150,
                 filename='plev_pentad',
                 timeav='pentad',
                 period_fac=1.,
                 lonin=[-1., 361.]):

    rcParams['figure.figsize'] = 15, 10
    rcParams['font.size'] = 25
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    data = time_means(run,
                      months,
                      filename=filename,
                      timeav=timeav,
                      period_fac=period_fac)

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    #advective terms
    partition_advection(data, lons, lev=150)

    data['mom_mean'] = (('xofyear', 'lat'),
                        data.u_dudx_zav + data.v_dudy_zav + data.w_dudp_zav)
    data['mom_trans'] = (('xofyear', 'lat'), data.uu_trans_dx +
                         data.uv_trans_dy + data.uw_trans_dp)
    data['mom_stat'] = (('xofyear', 'lat'),
                        data.u_dudx_stat + data.v_dudy_stat + data.w_dudp_stat)

    levels = np.arange(-10, 10.1, 2.)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    fig_dicts = [{
        'p1': 'mom_mean',
        'p2': 'u_dudx_zav',
        'p3': 'v_dudy_zav',
        'p4': 'w_dudp_zav',
        'namebase': 'meanstate_adv'
    }, {
        'p1': 'mom_stat',
        'p2': 'u_dudx_stat',
        'p3': 'v_dudy_stat',
        'p4': 'w_dudp_stat',
        'namebase': 'stat_adv'
    }, {
        'p1': 'mom_trans',
        'p2': 'uu_trans_dx',
        'p3': 'uv_trans_dy',
        'p4': 'uw_trans_dp',
        'namebase': 'trans_adv'
    }]

    for fig_dict in fig_dicts:
        # Six subplots
        fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2,
                                                               3,
                                                               sharex='col',
                                                               sharey='row')
        plt.set_cmap('RdBu_r')
        #First plot
        f1 = data[fig_dict['p1']].plot.contourf(ax=ax1,
                                                x='xofyear',
                                                y='lat',
                                                extend='both',
                                                levels=levels,
                                                add_colorbar=False,
                                                add_labels=False)
        ax1.set_ylabel('Latitude')
        ax1.set_ylim(-60, 60)
        ax1.grid(True, linestyle=':')

        #Fourth plot
        data[fig_dict['p2']].plot.contourf(ax=ax4,
                                           x='xofyear',
                                           y='lat',
                                           extend='both',
                                           levels=levels,
                                           add_colorbar=False,
                                           add_labels=False)
        ax4.grid(True, linestyle=':')
        ax4.set_ylabel('Latitude')
        ax4.set_xticks(tickspace)
        ax4.set_xticklabels(labels, rotation=25)
        ax4.set_ylim(-60, 60)

        #Fifth plot
        data[fig_dict['p3']].plot.contourf(ax=ax5,
                                           x='xofyear',
                                           y='lat',
                                           extend='both',
                                           levels=levels,
                                           add_colorbar=False,
                                           add_labels=False)
        ax5.grid(True, linestyle=':')
        ax5.set_xticks(tickspace)
        ax5.set_xticklabels(labels, rotation=25)
        ax5.set_ylim(-60, 60)

        #Sixth plot
        data[fig_dict['p4']].plot.contourf(ax=ax6,
                                           x='xofyear',
                                           y='lat',
                                           extend='both',
                                           levels=levels,
                                           add_colorbar=False,
                                           add_labels=False)
        ax6.grid(True, linestyle=':')
        ax6.set_xticks(tickspace)
        ax6.set_xticklabels(labels, rotation=25)
        ax6.set_ylim(-60, 60)

        plt.subplots_adjust(right=0.95, top=0.95, bottom=0., hspace=0.1)
        #Colorbar
        cb1 = fig.colorbar(f1,
                           ax=[ax1, ax2, ax3, ax4, ax5, ax6],
                           use_gridspec=True,
                           orientation='horizontal',
                           fraction=0.15,
                           pad=0.1,
                           aspect=30)
        cb1.set_label('$ms^{-1}day^{-1}$')

        if lonin == [-1., 361.]:
            figname = fig_dict['namebase'] + '.pdf'
        else:
            figname = fig_dict['namebase'] + '_' + str(int(
                lonin[0])) + '_' + str(int(lonin[1])) + '.pdf'

        plt.savefig(plot_dir + figname, format='pdf')
        plt.close()
def vort_eq_hm(run, lev=150, lonin=[-1., 361.]):

    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/paper_1_figs/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #Also load climatological data so that transient eddies can be calculated
    data = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/vort_eq_uv' + run + '.nc')
    print 'climatology loaded'

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    # Calculate vertical component of absolute vorticity = f + dv/dx - du/dy
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    v_dx = gr.ddx(data.vcomp)  # dvdx
    u_dy = gr.ddy(data.ucomp)  # dudy
    vor = v_dx - u_dy + f

    dvordx = gr.ddx(vor)
    dvordy = gr.ddy(vor, vector=False)

    div = gr.ddx(data.ucomp) + gr.ddy(data.vcomp)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    print 'starting plotting'

    # Easier to produce individual plots as scales are different.

    vor.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                y='lat',
                                                extend='both',
                                                add_labels=False,
                                                levels=np.arange(
                                                    -0.00024, 0.00025,
                                                    0.00002))
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.yticks(np.arange(-60, 61, 30))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.grid(True, linestyle=':')
    if lonin == [-1., 361.]:
        figname = 'vor_hm_' + run + '.pdf'
    else:
        figname = 'vor_hm_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()

    div.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                y='lat',
                                                extend='both',
                                                add_labels=False,
                                                levels=np.arange(
                                                    -0.000012, 0.000012,
                                                    0.000001))
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.yticks(np.arange(-60, 61, 30))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.grid(True, linestyle=':')
    if lonin == [-1., 361.]:
        figname = 'div_hm_' + run + '.pdf'
    else:
        figname = 'div_hm_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()

    dvordx.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                   y='lat',
                                                   extend='both',
                                                   add_labels=False)
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.yticks(np.arange(-60, 61, 30))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.grid(True, linestyle=':')
    if lonin == [-1., 361.]:
        figname = 'dvordx_hm_' + run + '.pdf'
    else:
        figname = 'dvordx_hm_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()

    dvordy.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                   y='lat',
                                                   extend='both',
                                                   add_labels=False,
                                                   levels=np.arange(
                                                       -1.2e-10, 1.25e-10,
                                                       0.1e-10))
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.yticks(np.arange(-60, 61, 30))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.grid(True, linestyle=':')
    if lonin == [-1., 361.]:
        figname = 'dvordy_hm_' + run + '.pdf'
    else:
        figname = 'dvordy_hm_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()

    data.ucomp.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                       y='lat',
                                                       extend='both',
                                                       add_labels=False)
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.yticks(np.arange(-60, 61, 30))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.grid(True, linestyle=':')
    if lonin == [-1., 361.]:
        figname = 'u_hm_' + run + '.pdf'
    else:
        figname = 'u_hm_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()

    data.vcomp.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                       y='lat',
                                                       extend='both',
                                                       add_labels=False,
                                                       levels=np.arange(
                                                           -15., 15.5, 1.))
    plt.ylabel('Latitude')
    plt.ylim(-60, 60)
    plt.yticks(np.arange(-60, 61, 30))
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.grid(True, linestyle=':')
    if lonin == [-1., 361.]:
        figname = 'v_hm_' + run + '.pdf'
    else:
        figname = 'v_hm_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'
    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #28
0
def ke_components(run,
                  months,
                  filename='plev_pentad',
                  timeav='month',
                  period_fac=1.,
                  land_mask=False,
                  level=9):

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/ke/' + str(
        level) + '/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    mn_dic = month_dic(1)

    data = time_means(run,
                      months,
                      filename=filename,
                      timeav=timeav,
                      period_fac=period_fac)

    uwnd = data.ucomp[:, level, :, :]
    vwnd = data.vcomp[:, level, :, :]

    w = VectorWind(uwnd, vwnd)
    uchi, vchi, upsi, vpsi = w.helmholtz()
    ke_chi = 0.5 * (uchi * uchi + vchi * vchi)
    ke_psi = 0.5 * (upsi * upsi + vpsi * vpsi)

    for i in range(0, 12):
        ax = ke_psi[i, :, :].plot.contourf(x='lon',
                                           y='lat',
                                           levels=np.arange(0., 250., 10.),
                                           extend='both',
                                           add_colorbar=False,
                                           add_label=False)
        cb1 = plt.colorbar(ax)
        cb1.set_label('Nondivergent KE')
        if land_mask:
            land = xr.open_dataset(
                '/scratch/rg419/GFDL_model/GFDLmoistModel/input/land.nc')
            land_plot = xr.DataArray(land.land_mask.values,
                                     [('lat', data.lat), ('lon', data.lon)])
            land_plot.plot.contour(x='lon',
                                   y='lat',
                                   levels=np.arange(0., 2., 1.),
                                   colors='0.75',
                                   add_colorbar=False,
                                   add_labels=False)
        cs = ke_chi[i, :, :].plot.contour(x='lon',
                                          y='lat',
                                          levels=np.arange(0., 36., 6.),
                                          extend='both',
                                          add_colorbar=False,
                                          colors='k',
                                          add_label=False)
        plt.clabel(cs, fontsize=15, inline_spacing=-1, fmt='%1.0f')
        plt.ylabel('Latitude')
        plt.xlabel('Longitude')
        plt.ylim(-10, 45)
        plt.xlim(25, 150)
        plt.tight_layout()
        plt.savefig(plot_dir + str(i + 1) + '_' + str(mn_dic[i + 1]) + '.png')
        plt.close()
Exemple #29
0
def vort_eq_hm(run, lev=150, lonin=[-1., 361.]):

    rcParams['figure.figsize'] = 15, 5.5
    rcParams['font.size'] = 18
    rcParams['text.usetex'] = True

    plot_dir = '/scratch/rg419/plots/paper_1_figs/revisions/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    #Load in vorticity budget term means
    data_vort = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/vort_eq_' + run + '.nc')
    data_vort = data_vort * 86400.**2.  #Convert to day^-2

    print 'vorticity budget data loaded'

    #Also load climatological data so that transient eddies can be calculated
    data = xr.open_dataset(
        '/scratch/rg419/Data_moist/climatologies/vort_eq_uv' + run + '.nc')
    print 'climatology loaded'

    if lonin[1] > lonin[0]:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            data.lon[i] for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    # Calculate vertical component of absolute vorticity = f + dv/dx - du/dy
    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    v_dx = gr.ddx(data.vcomp)  # dvdx
    u_dy = gr.ddy(data.ucomp)  # dudy
    vor = v_dx - u_dy + f

    abs_vort = vor.sel(lon=lons).mean('lon') * 86400.

    dvordx = gr.ddx(vor)
    dvordy = gr.ddy(vor, vector=False)

    horiz_md_mean = -86400.**2. * (data.ucomp * dvordx + data.vcomp * dvordy)

    div = gr.ddx(data.ucomp) + gr.ddy(data.vcomp)
    stretching_mean = -86400.**2. * vor * div

    # Zonal means
    horiz_zmean = -86400.**2. * (data.ucomp.mean('lon') * dvordx.mean('lon') +
                                 data.vcomp.mean('lon') * dvordy.mean('lon'))
    stretching_zmean = -86400.**2. * vor.mean('lon') * div.mean('lon')

    # Transient eddies
    transient_s_hm = (data_vort.stretching.sel(pfull=lev).values -
                      stretching_mean).sel(lon=lons).mean('lon')
    transient_h_hm = (data_vort.horiz_md.sel(pfull=lev).values -
                      horiz_md_mean).sel(lon=lons).mean('lon')

    transient_hm = transient_s_hm + transient_h_hm

    # Stationary eddies
    u_ed = data.ucomp - data.ucomp.mean('lon')
    v_ed = data.vcomp - data.vcomp.mean('lon')
    dvordx_ed = dvordx - dvordx.mean('lon')
    dvordy_ed = dvordy - dvordy.mean('lon')
    div_ed = div - div.mean('lon')
    vor_ed = vor - vor.mean('lon')

    stat_s = -86400.**2. * (div_ed * vor_ed)
    stat_h = -86400.**2. * (u_ed * dvordx_ed + v_ed * dvordy_ed)

    # Stationary eddy cross terms
    cross_s = -86400.**2. * (vor.mean('lon') * div_ed +
                             vor_ed * div.mean('lon'))
    cross_h = -86400.**2. * (u_ed * dvordx.mean('lon') +
                             v_ed * dvordy.mean('lon') +
                             data.ucomp.mean('lon') * dvordx_ed +
                             data.vcomp.mean('lon') * dvordy_ed)

    mn_dic = month_dic(1)
    tickspace = range(13, 72, 18)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]
    levels = np.arange(-1.5, 1.6, 0.25)

    print 'starting plotting'

    # Four subplots
    f, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2,
                                                         3,
                                                         sharex='col',
                                                         sharey='row')
    plt.set_cmap('RdBu_r')
    #First plot
    f2 = horiz_zmean.plot.contourf(x='xofyear',
                                   y='lat',
                                   levels=levels,
                                   ax=ax1,
                                   extend='both',
                                   add_labels=False)
    #ax1.contour(data.xofyear, data.lat, abs_vort.T, levels=np.arange(-12.,13.,2.), colors='k', linewidths=2, alpha=0.25)
    ax1.set_ylabel('Latitude')
    ax1.set_ylim(-60, 60)
    ax1.set_yticks(np.arange(-60, 61, 30))
    ax1.grid(True, linestyle=':')
    ax1.text(-15, 60, 'a)')

    #Second plot
    stat_h.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                   y='lat',
                                                   levels=levels,
                                                   ax=ax2,
                                                   extend='both',
                                                   add_labels=False)
    ax2.set_ylim(-60, 60)
    ax2.set_yticks(np.arange(-60, 61, 30))
    ax2.grid(True, linestyle=':')
    ax2.text(-7, 60, 'b)')

    #Third plot
    cross_h.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                    y='lat',
                                                    levels=levels,
                                                    ax=ax3,
                                                    extend='both',
                                                    add_labels=False)
    ax3.set_ylim(-60, 60)
    ax3.set_yticks(np.arange(-60, 61, 30))
    ax3.grid(True, linestyle=':')
    ax3.text(-7, 60, 'c)')

    #Fourth plot
    stretching_zmean.plot.contourf(x='xofyear',
                                   y='lat',
                                   levels=levels,
                                   ax=ax4,
                                   extend='both',
                                   add_labels=False)
    #ax4.contour(data.xofyear, data.lat, abs_vort.T, levels=np.arange(-12.,13.,2.), colors='k', linewidths=2, alpha=0.25)
    ax4.set_ylabel('Latitude')
    ax4.set_ylim(-60, 60)
    ax4.set_yticks(np.arange(-60, 61, 30))
    ax4.set_xticks(tickspace)
    ax4.set_xticklabels(labels, rotation=25)
    ax4.grid(True, linestyle=':')
    ax4.text(-15, 60, 'd)')

    #Fifth plot
    stat_s.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                   y='lat',
                                                   levels=levels,
                                                   ax=ax5,
                                                   extend='both',
                                                   add_labels=False)
    ax5.set_ylim(-60, 60)
    ax5.set_yticks(np.arange(-60, 61, 30))
    ax5.set_xticks(tickspace)
    ax5.set_xticklabels(labels, rotation=25)
    ax5.grid(True, linestyle=':')
    ax5.text(-7, 60, 'e)')

    #Sixth plot
    cross_s.sel(lon=lons).mean('lon').plot.contourf(x='xofyear',
                                                    y='lat',
                                                    levels=levels,
                                                    ax=ax6,
                                                    extend='both',
                                                    add_labels=False)
    #ax4.contour(data.xofyear, data.lat, abs_vort.T, levels=np.arange(-12.,13.,2.), colors='k', linewidths=2, alpha=0.25)
    ax6.set_ylim(-60, 60)
    ax6.set_yticks(np.arange(-60, 61, 30))
    ax6.set_xticks(tickspace)
    ax6.set_xticklabels(labels, rotation=25)
    ax6.grid(True, linestyle=':')
    ax6.text(-7, 60, 'f)')

    plt.subplots_adjust(right=0.97,
                        left=0.08,
                        top=0.93,
                        bottom=0.1,
                        hspace=0.25,
                        wspace=0.15)

    if lonin == [-1., 361.]:
        figname = 'vort_eddies_' + run + '.pdf'
    else:
        figname = 'vort_eddies_' + run + '_' + str(int(lonin[0])) + '_' + str(
            int(lonin[1])) + '.pdf'

    plt.savefig(plot_dir + figname, format='pdf')
    plt.close()
Exemple #30
0
def abs_vort_hm(run,
                months,
                filename='plev_pentad',
                timeav='pentad',
                period_fac=1.,
                lonin=[-1., 361.],
                level=10):

    plot_dir = '/scratch/rg419/plots/clean_diags/' + run + '/hm/'
    mkdir = sh.mkdir.bake('-p')
    mkdir(plot_dir)

    mn_dic = month_dic(1)
    tickspace = range(7, 72, 12)
    labels = [mn_dic[(k + 5) / 6] for k in tickspace]

    data = time_means(run,
                      months,
                      filename=filename,
                      timeav=timeav,
                      period_fac=period_fac)

    if lonin[1] > lonin[0]:
        lons = [
            i for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] and data.lon[i] < lonin[1]
        ]
    else:
        lons = [
            i for i in range(len(data.lon))
            if data.lon[i] >= lonin[0] or data.lon[i] < lonin[1]
        ]

    omega = 7.2921150e-5
    f = 2 * omega * np.sin(data.lat * np.pi / 180)
    abs_vort = (data.vor + f)[:, :, :, lons].mean('lon')
    abs_vort *= 1.e4

    uwnd = data.ucomp[:, level, :, :].load()

    ax = abs_vort[:, level, :].plot.contourf(x='xofyear',
                                             y='lat',
                                             levels=np.arange(-1., 1.1, 0.1),
                                             extend='both',
                                             add_colorbar=False,
                                             add_label=False)
    cs = uwnd[:, :, lons].mean('lon').plot.contour(x='xofyear',
                                                   y='lat',
                                                   levels=np.arange(
                                                       -1000., 1001., 1000.),
                                                   extend='both',
                                                   colors='k',
                                                   add_colorbar=False,
                                                   add_label=False)
    plt.grid(True, linestyle=':')
    cb1 = plt.colorbar(ax)
    cb1.set_label('Absolute vorticity')
    plt.xlabel('')
    plt.xticks(tickspace, labels, rotation=25)
    plt.yticks(range(-60, 61, 30))
    plt.ylabel('Latitude')
    plt.tight_layout()
    plt.savefig(plot_dir + 'abs_vort.png')
    plt.close()