def main(): """Summary Args: study_info_ (StudyInfo): Description """ study_info = StudyInfo("2019 study") # plot_all_csv(study_info_) # initial_test(study_info) test_models(study_info) test_features(study_info) pass
def output_all_polyseme_info(): """Summary :param study_info_: Args: study_info_ (TYPE): Description """ print("outputting all polyseme info") study_info_ = StudyInfo("2019 study") all_scenes = study_info_.scene_name_list generated_polyseme_models = GeneratePolysemeModels(all_scenes, all_scenes, study_info_) generated_polyseme_models.distinct_supervised_model.output_polyseme_info()
def output_typicality(): """Summary :param study_info_: Args: study_info_ (TYPE): Description """ print("outputting typicalities") s_info = StudyInfo("2019 study") all_scenes = s_info.scene_name_list generated_polyseme_models = GeneratePolysemeModels(all_scenes, all_scenes, s_info) p_models = generated_polyseme_models.models for model in p_models: for preposition in PREPOSITION_LIST: model.output_typicalities(preposition)
def get_standard_preposition_parameters(train_scenes): model_study_info = StudyInfo("2019 study") # scene_list = model_study_info.scene_name_list preposition_models_dict = dict() features_to_remove = Configuration.object_specific_features.copy() # Get parameters for each preposition for p in PREPOSITION_LIST: M = GeneratePrepositionModelParameters( model_study_info, p, train_scenes, features_to_remove=features_to_remove) M.work_out_models() preposition_models_dict[p] = M return preposition_models_dict
Args: scene (TYPE): Description f (TYPE): Description g (TYPE): Description Returns: TYPE: Description """ for i in self.instance_list: if i.configuration_match([scene, f, g]): return i if __name__ == '__main__': study_info = StudyInfo("2019 study") # First preprocess features preprocess_features.process_all_features(study_info) ### Semantic Annotations ### Collect annotation instances and attach values to them svcollection = SemanticCollection(study_info) svcollection.write_preposition_stats_csvs() svcollection.write_config_ratios() #### Comparative Annotations compcollection = ComparativeCollection(study_info)
"""Summary Contains Features class which, for a given study, reads file of extracted features, removes some features, gets average location control, standardises values and outputs """ from data_import import StudyInfo def process_all_features(study): """Summary """ f = study.feature_processor nd = f.standardise_values() f.write_new(nd) f.write_mean_std() if __name__ == '__main__': process_all_features(StudyInfo("2019 study")) process_all_features(StudyInfo("2020 study"))