def get_label(): pad = 24 data_dict = data_loader.get_data_pyro(countries, smart_start=False, pad=pad, rebuttal=True) data_dict = smooth_daily(data_dict) test_start = [str(x.date()) for x in list(data_dict['date_list'])].index('2020-04-25') test_len = 30 actual_14 = data_dict['actual_daily_death'][test_start:test_start + test_len].numpy() eval_days = [ str(data_dict['date_list'][test_start].date() + timedelta(days=x)) for x in range(test_len) ] return actual_14, eval_days
args = parser.parse_args() days = int(args.days) register_matplotlib_converters() countries = [ 'United Kingdom', 'Italy', 'Germany', 'Spain', 'US', 'France', 'Belgium', 'Korea, South', 'Brazil', 'Iran', 'Netherlands', 'Canada', 'Turkey', 'Romania', 'Portugal', 'Sweden', 'Switzerland', 'Ireland', 'Hungary', 'Denmark', 'Austria', 'Mexico', 'India', 'Ecuador', 'Russia', 'Peru', 'Indonesia', 'Poland', 'Philippines', 'Japan', 'Pakistan' ] niter = 2000 n_sample = 500 pad = 24 data_dict = data_loader.get_data_pyro(countries, smart_start=False, pad=pad) data_dict = pyro_model.helper.smooth_daily(data_dict) train_len = data_dict['cum_death'].shape[0] - days n_country = len(countries) covariates_notime = pyro_model.helper.get_covariates_intervention(data_dict, train_len, notime=True) Y_train = pyro_model.helper.get_Y(data_dict, train_len) total_len = len(data_dict['date_list']) covariates_full_notime = pyro_model.helper.get_covariates_intervention( data_dict, total_len, notime=True) Y_full = pyro_model.helper.get_Y(data_dict, total_len) Y_daily = data_dict['daily_death']
'country_feat': data_dict['country_feat'] } countries = [ 'United Kingdom', 'Italy', 'Germany', 'Spain', 'US', 'France', 'Belgium', 'Korea, South', 'Brazil', 'Iran', 'Netherlands', 'Canada', 'Turkey', 'Romania', 'Portugal', 'Sweden', 'Switzerland', 'Ireland', 'Hungary', 'Denmark', 'Austria', 'Mexico', 'India', 'Ecuador', 'Russia', 'Peru', 'Indonesia', 'Poland', 'Philippines', 'Japan', 'Pakistan' ] pad = 24 data_dict = data_loader.get_data_pyro(countries, smart_start=False, pad=pad, rebuttal=True) data_dict = smooth_daily(data_dict) test_start = [str(x.date()) for x in list(data_dict['date_list'])].index('2020-04-25') test_len = 30 actual_14 = data_dict['actual_daily_death'][test_start:test_start + test_len].numpy() eval_days = [ str(data_dict['date_list'][test_start].date() + timedelta(days=x)) for x in range(test_len)
'Portugal', 'Sweden', 'Switzerland', 'Ireland', 'Hungary', 'Denmark', 'Austria', 'Poland', ] model_id = 'testing' days = 14 niter = 500 n_sample = 1000 data_dict = data_loader.get_data_pyro(countries) data_dict = pyro_model.helper.smooth_daily(data_dict) train_len = data_dict['cum_death'].shape[0] - days n_country = len(countries) covariates_notime = pyro_model.helper.get_covariates_intervention(data_dict, train_len, notime=True) Y_train = data_dict['actual_cum_death'][:train_len, :] total_len = len(data_dict['date_list']) covariates_full_notime = pyro_model.helper.get_covariates_intervention( data_dict, total_len, notime=True) Y_full = data_dict['actual_cum_death'][:total_len, :] Y_daily = data_dict['actual_daily_death']