cmc, mAP = eval_sysu(-distmat, query_label, gall_label, query_cam, gall_cam) print('Evaluation Time:\t {:.3f}'.format(time.time() - start)) return cmc, mAP # training print('==> Start Training...') for epoch in range(start_epoch, 128 - start_epoch): print('==> Preparing Data Loader...') # identity sampler sampler = IdentitySampler(trainset.train_color_label, \ trainset.train_thermal_label, color_pos, thermal_pos, args.batch_size) trainset.cIndex = sampler.index1 # color index trainset.tIndex = sampler.index2 # thermal index trainloader = data.DataLoader(trainset, batch_size=args.batch_size,\ sampler = sampler, num_workers=args.workers, drop_last =True) # training train(epoch) if epoch > 0 and epoch % 2 == 0: print('Test Epoch: {}'.format(epoch)) print('Test Epoch: {}'.format(epoch), file=test_log_file) # testing cmc, mAP = test(epoch) print( 'FC: Rank-1: {:.2%} | Rank-5: {:.2%} | Rank-10: {:.2%}| mAP: {:.2%}' .format(cmc[0], cmc[4], cmc[9], mAP))
writer.add_scalar('mINP_att', mINP_att, epoch) return cmc, mAP, mINP, cmc_att, mAP_att, mINP_att # training print('==> Start Training...') for epoch in range(start_epoch, 81 - start_epoch): print('==> Preparing Data Loader...') # identity sampler: sampler = IdentitySampler(trainset.train_color_label, \ trainset.train_thermal_label, color_pos, thermal_pos, args.num_pos, args.batch_size, epoch) trainset.cIndex = sampler.index1 # color index trainset.tIndex = sampler.index2 # infrared index print(epoch) print(trainset.cIndex) print(trainset.tIndex) loader_batch = args.batch_size * args.num_pos trainloader = data.DataLoader(trainset, batch_size=loader_batch, \ sampler=sampler, num_workers=args.workers, drop_last=True) # training wG = train(epoch, wG) if epoch > 0 and epoch % 2 == 0: print('Test Epoch: {}'.format(epoch)) print('Test Epoch: {}'.format(epoch), file=test_log_file)