def __init__(self, **kwargs):
        super(BoxEvaluator, self).__init__(**kwargs)

        self.image_ids = get_image_ids(metadata=self.metadata)
        self.resize_length = _RESIZE_LENGTH
        self.cnt = 0
        self.num_correct = np.zeros(len(self.threshold_list))
        self.original_bboxes = get_bounding_boxes(self.metadata)
        self.image_sizes = get_image_sizes(self.metadata)
        self.gt_bboxes = self._load_resized_boxes(self.original_bboxes)
def evaluate_wsol(scoremap_root,
                  metadata_root,
                  mask_root,
                  dataset_name,
                  split,
                  cam_curve_interval=.001):
    """
    Compute WSOL performances of predicted heatmaps against ground truth
    boxes (CUB, ILSVRC) or masks (OpenImages). For boxes, we compute the
    gt-known box accuracy (IoU>=0.5) at the optimal heatmap threshold.
    For masks, we compute the area-under-curve of the pixel-wise precision-
    recall curve.

    Args:
        scoremap_root: string. Score maps for each eval image are saved under
            the output_path, with the name corresponding to their image_ids.
            For example, the heatmap for the image "123/456.JPEG" is expected
            to be located at "{output_path}/123/456.npy".
            The heatmaps must be numpy arrays of type np.float, with 2
            dimensions corresponding to height and width. The height and width
            must be identical to those of the original image. The heatmap values
            must be in the [0, 1] range. The map must attain values 0.0 and 1.0.
            See check_scoremap_validity() in util.py for the exact requirements.
        metadata_root: string.
        mask_root: string.
        dataset_name: string. Supports [CUB, ILSVRC, and OpenImages].
        split: string. Supports [train, val, test].
        cam_curve_interval: float. Default 0.001. At which threshold intervals
            will the heatmaps be evaluated?
    Returns:
        performance: float. For CUB and ILSVRC, maxboxacc is returned.
            For OpenImages, area-under-curve of the precision-recall curve
            is returned.
    """
    print("Loading and evaluating cams.")
    metadata = configure_metadata(metadata_root)
    image_ids = get_image_ids(metadata)
    cam_threshold_list = list(np.arange(0, 1, cam_curve_interval))

    evaluator = {
        "OpenImages": MaskEvaluator,
        "CUB": BoxEvaluator,
        "ILSVRC": BoxEvaluator
    }[dataset_name](metadata=metadata,
                    dataset_name=dataset_name,
                    split=split,
                    cam_threshold_list=cam_threshold_list,
                    mask_root=mask_root)

    cam_loader = _get_cam_loader(image_ids, scoremap_root)
    for cams, image_ids in cam_loader:
        for cam, image_id in zip(cams, image_ids):
            evaluator.accumulate(t2n(cam), image_id)
    performance = evaluator.compute()
    return performance
    def test_box_evaluator_boxes_and_sizes(self):
        for dataset_name in self._DATASET_NAMES:
            for split in self._SPLITS:
                metadata = set_metadata(dataset_name=dataset_name, split=split)
                evaluator = load_evaluator(
                    BoxEvaluator,
                    dataset_name=dataset_name,
                    split=split,
                    cam_curve_interval=self._CAM_CURVE_INTERVAL)
                image_ids = get_image_ids(metadata)

                test_boxes = [
                    evaluator.original_bboxes[image_id]
                    for image_id in image_ids[:3]
                ]
                test_sizes = [
                    evaluator.image_sizes[image_id]
                    for image_id in image_ids[:3]
                ]
                self.assertEqual(test_boxes,
                                 self._BOX_VERIFICATION[dataset_name][split])
                self.assertEqual(test_sizes,
                                 self._SIZE_VERIFICATION[dataset_name][split])
                self._check_box_sizes(image_ids, evaluator)