Exemple #1
0
def create_window(template, window_type, **kwargs):
    """
    
    :param template:
    :param type: 
    :return:
    """
    window = create_empty_image_like(template)
    if window_type == 'quarter':
        qx = template.shape[3] // 4
        qy = template.shape[2] // 4
        window.data[..., (qy + 1):3 * qy, (qx + 1):3 * qx] = 1.0
        log.info('create_mask: Cleaning inner quarter of each sky plane')
    elif window_type == 'no_edge':
        edge = get_parameter(kwargs, 'window_edge', 16)
        nx = template.shape[3]
        ny = template.shape[2]
        window.data[..., (edge + 1):(ny - edge), (edge + 1):(nx - edge)] = 1.0
        log.info('create_mask: Window omits %d-pixel edge of each sky plane' %
                 (edge))
    elif window_type == 'threshold':
        window_threshold = get_parameter(kwargs, 'window_threshold', None)
        if window_threshold is None:
            window_threshold = 10.0 * numpy.std(template.data)
        window[template.data >= window_threshold] = 1.0
        log.info('create_mask: Window omits all points below %g' %
                 (window_threshold))
    elif window_type is None:
        log.info("create_mask: Mask covers entire image")
    else:
        raise ValueError("Window shape %s is not recognized" % window_type)

    return window
Exemple #2
0
def gaintable_timeslice_iter(gt: GainTable, **kwargs) -> numpy.ndarray:
    """ W slice iterator

    :param wstack: wstack (wavelengths)
    :param gt_slices: Number of slices (second in precedence to wstack)
    :return: Boolean array with selected rows=True
    """
    assert isinstance(gt, GainTable)
    timemin = numpy.min(gt.time)
    timemax = numpy.max(gt.time)

    timeslice = get_parameter(kwargs, "timeslice", 'auto')
    if timeslice == 'auto':
        boxes = numpy.unique(gt.time)
        timeslice = 0.1
    elif timeslice is None:
        timeslice = timemax - timemin
        boxes = [0.5 * (timemax + timemin)]
    elif isinstance(timeslice, float) or isinstance(timeslice, int):
        boxes = numpy.arange(timemin, timemax, timeslice)
    else:
        gt_slices = get_parameter(kwargs, "gaintable_slices", None)
        assert gt_slices is not None, "Time slicing not specified: set either timeslice or gaintable_slices"
        boxes = numpy.linspace(timemin, timemax, gt_slices)
        if gt_slices > 1:
            timeslice = boxes[1] - boxes[0]
        else:
            timeslice = timemax - timemin

    for box in boxes:
        rows = numpy.abs(gt.time - box) <= 0.5 * timeslice
        yield rows
def predict_2d(vis: Union[BlockVisibility, Visibility], model: Image, gcfcf=None,
               **kwargs) -> Union[BlockVisibility, Visibility]:
    """ Predict using convolutional degridding.

    This is at the bottom of the layering i.e. all transforms are eventually expressed in terms of
    this function. Any shifting needed is performed here.

    :param vis: Visibility to be predicted
    :param model: model image
    :param gcfcf: (Grid correction function i.e. in image space, Convolution function i.e. in uv space)
    :return: resulting visibility (in place works)
    """
    
    if model is None:
        return vis
    
    assert isinstance(vis, Visibility), vis

    _, _, ny, nx = model.data.shape
    
    if gcfcf is None:
        gcf, cf = create_pswf_convolutionfunction(model,
                                                  support=get_parameter(kwargs, "support", 6),
                                                  oversampling=get_parameter(kwargs, "oversampling", 128))
    else:
        gcf, cf = gcfcf
    
    griddata = create_griddata_from_image(model)
    griddata = fft_image_to_griddata(model, griddata, gcf)
    vis = degrid_visibility_from_griddata(vis, griddata=griddata, cf=cf)
    
    # Now we can shift the visibility from the image frame to the original visibility frame
    svis = shift_vis_to_image(vis, model, tangent=True, inverse=True)
    
    return svis
def weight_visibility(vis: Visibility, im: Image, **kwargs) -> Visibility:
    """ Reweight the visibility data using a selected algorithm

    Imaging uses the column "imaging_weight" when imaging. This function sets that column using a
    variety of algorithms
    
    Options are:
        - Natural: by visibility weight (optimum for noise in final image)
        - Uniform: weight of sample divided by sum of weights in cell (optimum for sidelobes)
        - Super-uniform: As uniform, by sum of weights is over extended box region
        - Briggs: Compromise between natural and uniform
        - Super-briggs: As Briggs, by sum of weights is over extended box region

    :param vis:
    :param im:
    :return: visibility with imaging_weights column added and filled
    """
    assert isinstance(vis, Visibility), "vis is not a Visibility: %r" % vis

    assert get_parameter(kwargs, "padding", False) is False
    spectral_mode, vfrequencymap = get_frequency_map(vis, im)
    polarisation_mode, vpolarisationmap = get_polarisation_map(vis, im)
    uvw_mode, shape, padding, vuvwmap = get_uvw_map(vis, im)

    density = None
    densitygrid = None

    weighting = get_parameter(kwargs, "weighting", "uniform")
    vis.data['imaging_weight'], density, densitygrid = weight_gridding(
        im.data.shape, vis.data['weight'], vuvwmap, vfrequencymap,
        vpolarisationmap, weighting)

    return vis, density, densitygrid
Exemple #5
0
def deconvolve_list_mpi_workflow(dirty_list, psf_list, model_imagelist,
                                        prefix='',
                                        mask=None,comm=MPI.COMM_WORLD, **kwargs):
    """Create a graph for deconvolution, adding to the model

    :param dirty_list: in rank0
    :param psf_list: in rank0
    :param model_imagelist: in rank0
    :param prefix: Informative prefix to log messages
    :param mask: Mask for deconvolution
    :param comm: MPI communicator
    :param kwargs: Parameters for functions in components
    :return: graph for the deconvolution
    """
    rank = comm.Get_rank()
    size = comm.Get_size()
    nchan = len(dirty_list)
    log.info('%d: deconvolve_list_mpi_workflow: dirty_list len %d psf_list len %d model_imagelist len %d' %(rank,len(dirty_list),len(psf_list),len(model_imagelist)))

    nmoment = get_parameter(kwargs, "nmoment", 0)
    assert get_parameter(kwargs, "use_serial_clean", True),"Only serial deconvolution implemented"
    if get_parameter(kwargs, "use_serial_clean", True):
        from workflows.serial.imaging.imaging_serial import deconvolve_list_serial_workflow
        if rank==0:
            assert isinstance(model_imagelist, list), model_imagelist
            result_list=deconvolve_list_serial_workflow (dirty_list, psf_list, model_imagelist, prefix=prefix, mask=mask, **kwargs)
        else:
            result_list=list()
    return result_list
Exemple #6
0
def invert_2d(vis: Visibility,
              im: Image,
              dopsf: bool = False,
              normalize: bool = True,
              gcfcf=None,
              **kwargs) -> (Image, numpy.ndarray):
    """ Invert using 2D convolution function, using the specified convolution function

    Use the image im as a template. Do PSF in a separate call.

    This is at the bottom of the layering i.e. all transforms are eventually expressed in terms
    of this function. . Any shifting needed is performed here.

    :param vis: Visibility to be inverted
    :param im: image template (not changed)
    :param dopsf: Make the psf instead of the dirty image
    :param normalize: Normalize by the sum of weights (True)
    :param gcfcf: (Grid correction function i.e. in image space, Convolution function i.e. in uv space)
    :return: resulting image

    """
    if not isinstance(vis, Visibility):
        svis = coalesce_visibility(vis, **kwargs)
    else:
        svis = copy_visibility(vis)

    if dopsf:
        svis.data['vis'] = numpy.ones_like(svis.data['vis'])

    svis = shift_vis_to_image(svis, im, tangent=True, inverse=False)

    if gcfcf is None:
        gcf, cf = create_pswf_convolutionfunction(
            im,
            support=get_parameter(kwargs, "support", 6),
            oversampling=get_parameter(kwargs, "oversampling", 128))
    else:
        gcf, cf = gcfcf

    griddata = create_griddata_from_image(im)
    griddata, sumwt = grid_visibility_to_griddata(svis,
                                                  griddata=griddata,
                                                  cf=cf)

    imaginary = get_parameter(kwargs, "imaginary", False)
    if imaginary:
        result0, result1 = fft_griddata_to_image(griddata,
                                                 gcf,
                                                 imaginary=imaginary)
        log.debug("invert_2d: retaining imaginary part of dirty image")
        if normalize:
            result0 = normalize_sumwt(result0, sumwt)
            result1 = normalize_sumwt(result1, sumwt)
        return result0, sumwt, result1
    else:
        result = fft_griddata_to_image(griddata, gcf)
        if normalize:
            result = normalize_sumwt(result, sumwt)
        return result, sumwt
Exemple #7
0
def get_kernel_list(vis: Visibility, im: Image, **kwargs):
    """Get the list of kernels, one per visibility
    
    """

    shape = im.data.shape
    npixel = shape[3]
    cellsize = numpy.pi * im.wcs.wcs.cdelt[1] / 180.0

    wstep = get_parameter(kwargs, "wstep", 0.0)
    oversampling = get_parameter(kwargs, "oversampling", 8)
    padding = get_parameter(kwargs, "padding", 2)

    gcf, _ = anti_aliasing_calculate((padding * npixel, padding * npixel),
                                     oversampling)

    wabsmax = numpy.max(numpy.abs(vis.w))
    if wstep > 0.0 and wabsmax > 0.0:
        kernelname = 'wprojection'
        # wprojection needs a lot of commentary!
        log.debug("get_kernel_list: Using w projection with wstep = %f" %
                  wstep)

        # The field of view must be as padded! R_F is for reporting only so that
        # need not be padded.
        fov = cellsize * npixel * padding
        r_f = (cellsize * npixel / 2)**2 / abs(cellsize)
        log.debug("get_kernel_list: Fresnel number = %f" % r_f)

        # Now calculate the maximum support for the w kernel
        kernelwidth = get_parameter(
            kwargs, "kernelwidth",
            (2 *
             int(round(numpy.sin(0.5 * fov) * npixel * wabsmax * cellsize))))
        kernelwidth = max(kernelwidth, 8)
        assert kernelwidth % 2 == 0
        log.debug("get_kernel_list: Maximum w kernel full width = %d pixels" %
                  kernelwidth)
        padded_shape = [
            im.shape[0], im.shape[1], im.shape[2] * padding,
            im.shape[3] * padding
        ]

        remove_shift = get_parameter(kwargs, "remove_shift", True)
        padded_image = pad_image(im, padded_shape)
        kernel_list = w_kernel_list(vis,
                                    padded_image,
                                    oversampling=oversampling,
                                    wstep=wstep,
                                    kernelwidth=kernelwidth,
                                    remove_shift=remove_shift)
    else:
        kernelname = '2d'
        kernel_list = standard_kernel_list(
            vis, (padding * npixel, padding * npixel),
            oversampling=oversampling)

    return kernelname, gcf, kernel_list
Exemple #8
0
def coalesce_visibility(vis: BlockVisibility, **kwargs) -> Visibility:
    """ Coalesce the BlockVisibility data_models. The output format is a Visibility, as needed for imaging

    Coalesce by baseline-dependent averaging (optional). The number of integrations averaged goes as the ratio of the
    maximum possible baseline length to that for this baseline. This number can be scaled by coalescence_factor and
    limited by max_coalescence.

    When faceting, the coalescence factors should be roughly the same as the number of facets on one axis.

    If coalescence_factor=0.0 then just a format conversion is done

    :param vis: BlockVisibility to be coalesced
    :return: Coalesced visibility with  cindex and blockvis filled in
    """

    assert isinstance(
        vis, BlockVisibility), "vis is not a BlockVisibility: %r" % vis

    time_coal = get_parameter(kwargs, 'time_coal', 0.0)
    max_time_coal = get_parameter(kwargs, 'max_time_coal', 100)
    frequency_coal = get_parameter(kwargs, 'frequency_coal', 0.0)
    max_frequency_coal = get_parameter(kwargs, 'max_frequency_coal', 100)

    if time_coal == 0.0 and frequency_coal == 0.0:
        return convert_blockvisibility_to_visibility((vis))

    cvis, cuvw, cwts, cimwt, ctime, cfrequency, cchannel_bandwidth, ca1, ca2, cintegration_time, cindex \
        = average_in_blocks(vis.data['vis'], vis.data['uvw'], vis.data['weight'], vis.data['imaging_weight'],
                            vis.time, vis.integration_time,
                            vis.frequency, vis.channel_bandwidth, time_coal, max_time_coal,
                            frequency_coal, max_frequency_coal)
    coalesced_vis = Visibility(uvw=cuvw,
                               time=ctime,
                               frequency=cfrequency,
                               channel_bandwidth=cchannel_bandwidth,
                               phasecentre=vis.phasecentre,
                               antenna1=ca1,
                               antenna2=ca2,
                               vis=cvis,
                               weight=cwts,
                               imaging_weight=cimwt,
                               configuration=vis.configuration,
                               integration_time=cintegration_time,
                               polarisation_frame=vis.polarisation_frame,
                               cindex=cindex,
                               blockvis=vis,
                               meta=vis.meta)

    log.debug(
        'coalesce_visibility: Created new Visibility for coalesced data_models, coalescence factors (t,f) = (%.3f,%.3f)'
        % (time_coal, frequency_coal))
    log.debug('coalesce_visibility: Maximum coalescence (t,f) = (%d, %d)' %
              (max_time_coal, max_frequency_coal))
    log.debug('coalesce_visibility: Original %s, coalesced %s' %
              (vis_summary(vis), vis_summary(coalesced_vis)))

    return coalesced_vis
Exemple #9
0
def predict_list_mpi_workflow(vis_list, model_imagelist, context, vis_slices=1, facets=1,
                                     gcfcf=None, comm=MPI.COMM_WORLD, **kwargs):
    """Predict, iterating over both the scattered vis_list and image
    
    The visibility and image are scattered, the visibility is predicted on each part, and then the
    parts are assembled. About data distribution: vis_list and model_imagelist
    live in rank 0; vis_slices, facets, context are replicated in all nodes.
    gcfcf if exists lives in rank 0; if not every mpi proc will create its own
    for the  corresponding subset of the image.

    :param vis_list:
    :param model_imagelist: Model used to determine image parameters
    :param vis_slices: Number of vis slices (w stack or timeslice)
    :param facets: Number of facets (per axis)
    :param context: Type of processing e.g. 2d, wstack, timeslice or facets
    :param gcfcg: tuple containing grid correction and convolution function
    :param comm: MPI communicator
    :param kwargs: Parameters for functions in components
    :return: List of vis_lists
   """
    rank = comm.Get_rank()
    size = comm.Get_size()
    log.info('%d: In predict_list_mpi_workflow: %d elements in vis_list' % (rank,len(vis_list)))
    # the assert only makes sense in proc 0 as for the others both lists are
    # empty
    assert len(vis_list) == len(model_imagelist), "Model must be the same length as the vis_list"

    # The use_serial_predict version paralelizes by freq (my opt version) 
    assert get_parameter(kwargs, "use_serial_predict", True),"Only freq paralellization implemented"
    #if get_parameter(kwargs, "use_serial_predict", False):
    if get_parameter(kwargs, "use_serial_predict", True):
        from workflows.serial.imaging.imaging_serial import predict_list_serial_workflow
        
        image_results_list = list()
        # Distribute visibilities and model by freq
        sub_vis_list= numpy.array_split(vis_list, size)
        sub_vis_list=comm.scatter(sub_vis_list,root=0)
        sub_model_imagelist= numpy.array_split(model_imagelist, size)
        sub_model_imagelist=comm.scatter(sub_model_imagelist,root=0)
        if gcfcf is not None:
            sub_gcfcf = numpy.array_split(gcfcf,size)
            sub_gcfcf=comm.scatter(sub_gcfcf,root=0)
        isinstance(sub_vis_list[0], Visibility)
        image_results_list= [predict_list_serial_workflow(vis_list=[sub_vis_list[i]],
                     model_imagelist=[sub_model_imagelist[i]], vis_slices=vis_slices,
                     facets=facets, context=context, gcfcf=gcfcf, **kwargs)[0]
                for i, _ in enumerate(sub_vis_list)]
        #print(image_results_list)
        
        image_results_list=comm.gather(image_results_list,root=0)
        if rank == 0:
            #image_results_list_list=[x for x in image_results_list_list if x]
            image_results_list=numpy.concatenate(image_results_list)
        else:
            image_results_list=list()

    return image_results_list
def solve_image_arlexecute(vis: Visibility, model: Image, components=None, context='2d', **kwargs) -> \
        (Visibility, Image, Image):
    """Solve for image using deconvolve_cube and specified predict, invert

    This is the same as a majorcycle/minorcycle algorithm. The components are removed prior to deconvolution.
    
    See also arguments for predict, invert, deconvolve_cube functions.2d

    :param vis:
    :param model: Model image
    :param predict: Predict function e.g. predict_2d, predict_wstack
    :param invert: Invert function e.g. invert_2d, invert_wstack
    :return: Visibility, model
    """
    nmajor = get_parameter(kwargs, 'nmajor', 5)
    thresh = get_parameter(kwargs, "threshold", 0.0)
    log.info("solve_image_arlexecute: Performing %d major cycles" % nmajor)
    
    # The model is added to each major cycle and then the visibilities are
    # calculated from the full model
    vispred = copy_visibility(vis, zero=True)
    visres = copy_visibility(vis, zero=True)

    vispred = predict_arlexecute(vispred, model, context=context, **kwargs)
    
    if components is not None:
        vispred = predict_skycomponent_visibility(vispred, components)
    
    visres.data['vis'] = vis.data['vis'] - vispred.data['vis']
    dirty, sumwt = invert_arlexecute(visres, model, context=context, dopsf=False, **kwargs)
    assert sumwt.any() > 0.0, "Sum of weights is zero"
    psf, sumwt = invert_arlexecute(visres, model, context=context, dopsf=True, **kwargs)
    assert sumwt.any() > 0.0, "Sum of weights is zero"
    
    for i in range(nmajor):
        log.info("solve_image_arlexecute: Start of major cycle %d" % i)
        cc, res = deconvolve_cube(dirty, psf, **kwargs)
        model.data += cc.data
        vispred.data['vis'][...]=0.0
        vispred = predict_arlexecute(vispred, model, context=context, **kwargs)
        visres.data['vis'] = vis.data['vis'] - vispred.data['vis']
        dirty, sumwt = invert_arlexecute(visres, model, context=context, dopsf=False, **kwargs)
        if numpy.abs(dirty.data).max() < 1.1 * thresh:
            log.info("Reached stopping threshold %.6f Jy" % thresh)
            break
        log.info("solve_image_arlexecute: End of minor cycles")

    log.info("solve_image_arlexecute: End of major cycles")
    return visres, model, dirty
def continuum_imaging_list_serial_workflow(vis_list, model_imagelist, context='2d', **kwargs):
    """ Create graph for the continuum imaging pipeline.

    Same as ICAL but with no selfcal.

    :param vis_list:
    :param model_imagelist:
    :param context: Imaging context
    :param kwargs: Parameters for functions in components
    :return:
    """
    psf_imagelist = invert_list_serial_workflow(vis_list, model_imagelist, dopsf=True, context=context, **kwargs)
    
    residual_imagelist = residual_list_serial_workflow(vis_list, model_imagelist, context=context, **kwargs)
    deconvolve_model_imagelist, _ = deconvolve_list_serial_workflow(residual_imagelist, psf_imagelist,
                                                                        model_imagelist,
                                                                        prefix='cycle 0',
                                                                        **kwargs)
    
    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            prefix = "cycle %d" % (cycle + 1)
            residual_imagelist = residual_list_serial_workflow(vis_list, deconvolve_model_imagelist,
                                                                   context=context, **kwargs)
            deconvolve_model_imagelist, _ = deconvolve_list_serial_workflow(residual_imagelist, psf_imagelist,
                                                                                deconvolve_model_imagelist,
                                                                                prefix=prefix,
                                                                                **kwargs)
    
    residual_imagelist = residual_list_serial_workflow(vis_list, deconvolve_model_imagelist, context=context,
                                                           **kwargs)
    restore_imagelist = restore_list_serial_workflow(deconvolve_model_imagelist, psf_imagelist, residual_imagelist)
    return (deconvolve_model_imagelist, residual_imagelist, restore_imagelist)
def restore_cube(model: Image, psf: Image, residual=None, **kwargs) -> Image:
    """ Restore the model image to the residuals

    :params psf: Input PSF
    :return: restored image

    """
    assert isinstance(model, Image), model
    assert isinstance(psf, Image), psf
    assert residual is None or isinstance(residual, Image), residual

    restored = copy_image(model)

    npixel = psf.data.shape[3]
    sl = slice(npixel // 2 - 7, npixel // 2 + 8)

    size = get_parameter(kwargs, "psfwidth", None)

    if size is None:
        # isotropic at the moment!
        from scipy.optimize import minpack
        try:
            fit = fit_2dgaussian(psf.data[0, 0, sl, sl])
            if fit.x_stddev <= 0.0 or fit.y_stddev <= 0.0:
                log.debug(
                    'restore_cube: error in fitting to psf, using 1 pixel stddev'
                )
                size = 1.0
            else:
                size = max(fit.x_stddev, fit.y_stddev)
                log.debug('restore_cube: psfwidth = %s' % (size))
        except minpack.error as err:
            log.debug('restore_cube: minpack error, using 1 pixel stddev')
            size = 1.0
        except ValueError as err:
            log.debug(
                'restore_cube: warning in fit to psf, using 1 pixel stddev')
            size = 1.0
    else:
        log.debug('restore_cube: Using specified psfwidth = %s' % (size))

    # TODO: Remove filter when astropy fixes convolve
    import warnings
    warnings.simplefilter(action='ignore', category=FutureWarning)
    from astropy.convolution import Gaussian2DKernel, convolve_fft

    # By convention, we normalise the peak not the integral so this is the volume of the Gaussian
    norm = 2.0 * numpy.pi * size**2
    gk = Gaussian2DKernel(size)
    for chan in range(model.shape[0]):
        for pol in range(model.shape[1]):
            restored.data[chan, pol, :, :] = norm * convolve_fft(
                model.data[chan, pol, :, :],
                gk,
                normalize_kernel=False,
                allow_huge=True)
    if residual is not None:
        restored.data += residual.data
    return restored
def create_named_configuration(name: str = 'LOWBD2', **kwargs) -> Configuration:
    """ Standard configurations e.g. LOWBD2, MIDBD2

    :param name: name of Configuration LOWBD2, LOWBD1, LOFAR, VLAA, ASKAP
    :param rmax: Maximum distance of station from the average (m)
    :return:
    
    For LOWBD2, setting rmax gives the following number of stations
    100.0       13
    300.0       94
    1000.0      251
    3000.0      314
    10000.0     398
    30000.0     476
    100000.0    512
    """
    
    if name == 'LOWBD2':
        location = EarthLocation(lon="116.4999", lat="-26.7000", height=300.0)
        fc = create_configuration_from_file(antfile=arl_path("data/configurations/LOWBD2.csv"),
                                            location=location, mount='xy', names='LOWBD2_%d',
                                            diameter=35.0, name=name, **kwargs)
    elif name == 'LOWBD1':
        location = EarthLocation(lon="116.4999", lat="-26.7000", height=300.0)
        fc = create_configuration_from_file(antfile=arl_path("data/configurations/LOWBD1.csv"),
                                            location=location, mount='xy', names='LOWBD1_%d',
                                            diameter=35.0, name=name, **kwargs)
    elif name == 'LOWBD2-CORE':
        location = EarthLocation(lon="116.4999", lat="-26.7000", height=300.0)
        fc = create_configuration_from_file(antfile=arl_path("data/configurations/LOWBD2-CORE.csv"),
                                            location=location, mount='xy', names='LOWBD2_%d',
                                            diameter=35.0, name=name, **kwargs)
    elif name == 'ASKAP':
        location = EarthLocation(lon="+116.6356824", lat="-26.7013006", height=377.0)
        fc = create_configuration_from_file(antfile=arl_path("data/configurations/A27CR3P6B.in.csv"),
                                            mount='equatorial', names='ASKAP_%d',
                                            diameter=12.0, name=name, location=location, **kwargs)
    elif name == 'LOFAR':
        assert get_parameter(kwargs, "meta", False) is False
        fc = create_LOFAR_configuration(antfile=arl_path("data/configurations/LOFAR.csv"))
    elif name == 'VLAA':
        location = EarthLocation(lon="-107.6184", lat="34.0784", height=2124.0)
        fc = create_configuration_from_file(antfile=arl_path("data/configurations/VLA_A_hor_xyz.csv"),
                                            location=location,
                                            mount='altaz',
                                            names='VLA_%d',
                                            diameter=25.0, name=name, **kwargs)
    elif name == 'VLAA_north':
        location = EarthLocation(lon="-107.6184", lat="90.000", height=2124.0)
        fc = create_configuration_from_file(antfile=arl_path("data/configurations/VLA_A_hor_xyz.csv"),
                                            location=location,
                                            mount='altaz',
                                            names='VLA_%d',
                                            diameter=25.0, name=name, **kwargs)
    else:
        raise ValueError("No such Configuration %s" % name)
    return fc
Exemple #14
0
def ical_workflow(vis_list, model_imagelist, context='2d', calibration_context='TG', do_selfcal=True, **kwargs):
    """Create graph for ICAL pipeline

    :param vis_list:
    :param model_imagelist:
    :param context: imaging context e.g. '2d'
    :param calibration_context: Sequence of calibration steps e.g. TGB
    :param do_selfcal: Do the selfcalibration?
    :param kwargs: Parameters for functions in components
    :return:
    """
    psf_imagelist = invert_workflow(vis_list, model_imagelist, dopsf=True, context=context, **kwargs)
    
    model_vislist = zero_vislist_workflow(vis_list)
    model_vislist = predict_workflow(model_vislist, model_imagelist, context=context, **kwargs)
    if do_selfcal:
        # Make the predicted visibilities, selfcalibrate against it correcting the gains, then
        # form the residual visibility, then make the residual image
        vis_list = calibrate_workflow(vis_list, model_vislist,
                                       calibration_context=calibration_context, **kwargs)
        residual_vislist = subtract_vislist_workflow(vis_list, model_vislist)
        residual_imagelist = invert_workflow(residual_vislist, model_imagelist, dopsf=True, context=context,
                                              iteration=0, **kwargs)
    else:
        # If we are not selfcalibrating it's much easier and we can avoid an unnecessary round of gather/scatter
        # for visibility partitioning such as timeslices and wstack.
        residual_imagelist = residual_workflow(vis_list, model_imagelist, context=context, **kwargs)
    
    deconvolve_model_imagelist, _ = deconvolve_workflow(residual_imagelist, psf_imagelist, model_imagelist,
                                                         prefix='cycle 0', **kwargs)
    
    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            if do_selfcal:
                model_vislist = zero_vislist_workflow(vis_list)
                model_vislist = predict_workflow(model_vislist, deconvolve_model_imagelist,
                                                  context=context, **kwargs)
                vis_list = calibrate_workflow(vis_list, model_vislist,
                                               calibration_context=calibration_context,
                                               iteration=cycle, **kwargs)
                residual_vislist = subtract_vislist_workflow(vis_list, model_vislist)
                residual_imagelist = invert_workflow(residual_vislist, model_imagelist, dopsf=False,
                                                      context=context, **kwargs)
            else:
                residual_imagelist = residual_workflow(vis_list, deconvolve_model_imagelist,
                                                        context=context, **kwargs)
            
            prefix = "cycle %d" % (cycle+1)
            deconvolve_model_imagelist, _ = deconvolve_workflow(residual_imagelist, psf_imagelist,
                                                                 deconvolve_model_imagelist,
                                                                 prefix=prefix,
                                                                 **kwargs)
    residual_imagelist = residual_workflow(vis_list, deconvolve_model_imagelist, context=context, **kwargs)
    restore_imagelist = restore_workflow(deconvolve_model_imagelist, psf_imagelist, residual_imagelist)
    
    return arlexecute.execute((deconvolve_model_imagelist, residual_imagelist, restore_imagelist))
def predict_2d(vis: Union[BlockVisibility, Visibility], model: Image,
               **kwargs) -> Union[BlockVisibility, Visibility]:
    """ Predict using convolutional degridding.

    This is at the bottom of the layering i.e. all transforms are eventually expressed in terms of
    this function. Any shifting needed is performed here.

    :param vis: Visibility to be predicted
    :param model: model image
    :return: resulting visibility (in place works)
    """
    if isinstance(vis, BlockVisibility):
        log.debug("imaging.predict: coalescing prior to prediction")
        avis = coalesce_visibility(vis, **kwargs)
    else:
        avis = vis

    assert isinstance(avis, Visibility), avis

    _, _, ny, nx = model.data.shape

    padding = {}
    if get_parameter(kwargs, "padding", False):
        padding = {'padding': get_parameter(kwargs, "padding", False)}
    spectral_mode, vfrequencymap = get_frequency_map(avis, model)
    polarisation_mode, vpolarisationmap = get_polarisation_map(avis, model)
    uvw_mode, shape, padding, vuvwmap = get_uvw_map(avis, model, **padding)
    kernel_name, gcf, vkernellist = get_kernel_list(avis, model, **kwargs)

    uvgrid = fft((pad_mid(model.data, int(round(padding * nx))) *
                  gcf).astype(dtype=complex))

    avis.data['vis'] = convolutional_degrid(vkernellist,
                                            avis.data['vis'].shape, uvgrid,
                                            vuvwmap, vfrequencymap)

    # Now we can shift the visibility from the image frame to the original visibility frame
    svis = shift_vis_to_image(avis, model, tangent=True, inverse=True)

    if isinstance(vis, BlockVisibility) and isinstance(svis, Visibility):
        log.debug("imaging.predict decoalescing post prediction")
        return decoalesce_visibility(svis)
    else:
        return svis
 def t1(**kwargs):
     assert get_parameter(kwargs, 'cellsize') == 0.1
     assert get_parameter(kwargs, 'spectral_mode', 'channels') == 'mfs'
     assert get_parameter(kwargs, 'null_mode', 'mfs') == 'mfs'
     assert get_parameter(kwargs, 'foo', 'bar') == 'bar'
     assert get_parameter(kwargs, 'foo') is None
     assert get_parameter(None, 'foo', 'bar') == 'bar'
    def deconvolve(dirty, psf, model, facet, gthreshold):
        import time
        starttime = time.time()
        if prefix == '':
            lprefix = "facet %d" % facet
        else:
            lprefix = "%s, facet %d" % (prefix, facet)

        nmoments = get_parameter(kwargs, "nmoments", 0)

        if nmoments > 0:
            moment0 = calculate_image_frequency_moments(dirty)
            this_peak = numpy.max(numpy.abs(
                moment0.data[0, ...])) / dirty.data.shape[0]
        else:
            this_peak = numpy.max(numpy.abs(dirty.data[0, ...]))

        if this_peak > 1.1 * gthreshold:
            log.info(
                "deconvolve_list_serial_workflow %s: cleaning - peak %.6f > 1.1 * threshold %.6f"
                % (lprefix, this_peak, gthreshold))
            kwargs['threshold'] = gthreshold
            result, _ = deconvolve_cube(dirty, psf, prefix=lprefix, **kwargs)

            if result.data.shape[0] == model.data.shape[0]:
                result.data += model.data
            else:
                log.warning(
                    "deconvolve_list_serial_workflow %s: Initial model %s and clean result %s do not have the same shape"
                    % (lprefix, str(
                        model.data.shape[0]), str(result.data.shape[0])))

            flux = numpy.sum(result.data[0, 0, ...])
            log.info(
                '### %s, %.6f, %.6f, True, %.3f # cycle, facet, peak, cleaned flux, clean, time?'
                % (lprefix, this_peak, flux, time.time() - starttime))

            return result
        else:
            log.info(
                "deconvolve_list_serial_workflow %s: Not cleaning - peak %.6f <= 1.1 * threshold %.6f"
                % (lprefix, this_peak, gthreshold))
            log.info(
                '### %s, %.6f, %.6f, False, %.3f # cycle, facet, peak, cleaned flux, clean, time?'
                % (lprefix, this_peak, 0.0, time.time() - starttime))

            return copy_image(model)
Exemple #18
0
def continuum_imaging_list_serial_workflow(vis_list, model_imagelist, context, gcfcf=None,
                                           vis_slices=1, facets=1, **kwargs):
    """ Create graph for the continuum imaging pipeline.

    Same as ICAL but with no selfcal.

    :param vis_list:
    :param model_imagelist:
    :param context: Imaging context
    :param kwargs: Parameters for functions in components
    :return:
    """
    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(model_imagelist[0])]
    
    psf_imagelist = invert_list_serial_workflow(vis_list, model_imagelist, context=context, dopsf=True,
                                                vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)
    
    residual_imagelist = residual_list_serial_workflow(vis_list, model_imagelist, context=context, gcfcf=gcfcf,
                                                       vis_slices=vis_slices, facets=facets, **kwargs)
    
    deconvolve_model_imagelist, _ = deconvolve_list_serial_workflow(residual_imagelist, psf_imagelist,
                                                                    model_imagelist,
                                                                    prefix='cycle 0',
                                                                    **kwargs)
    
    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            prefix = "cycle %d" % (cycle + 1)
            residual_imagelist = residual_list_serial_workflow(vis_list, deconvolve_model_imagelist,
                                                               context=context, vis_slices=vis_slices,
                                                               facets=facets,
                                                               gcfcf=gcfcf, **kwargs)
            deconvolve_model_imagelist, _ = deconvolve_list_serial_workflow(residual_imagelist, psf_imagelist,
                                                                            deconvolve_model_imagelist,
                                                                            prefix=prefix,
                                                                            **kwargs)
    
    residual_imagelist = residual_list_serial_workflow(vis_list, deconvolve_model_imagelist, context=context,
                                                       vis_slices=vis_slices, facets=facets, gcfcf=gcfcf, **kwargs)
    restore_imagelist = restore_list_serial_workflow(deconvolve_model_imagelist, psf_imagelist, residual_imagelist)
    return (deconvolve_model_imagelist, residual_imagelist, restore_imagelist)
def deconvolve_cube(dirty: Image,
                    psf: Image,
                    prefix='',
                    **kwargs) -> (Image, Image):
    """ Clean using a variety of algorithms
    
    Functions that clean a dirty image using a point spread function. The algorithms available are:
    
    hogbom: Hogbom CLEAN See: Hogbom CLEAN A&A Suppl, 15, 417, (1974)
    
    msclean: MultiScale CLEAN See: Cornwell, T.J., Multiscale CLEAN (IEEE Journal of Selected Topics in Sig Proc,
    2008 vol. 2 pp. 793-801)

    mfsmsclean, msmfsclean, mmclean: MultiScale Multi-Frequency See: U. Rau and T. J. Cornwell,
    “A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry,” A&A 532,
    A71 (2011).
    
    For example::
    
        comp, residual = deconvolve_cube(dirty, psf, niter=1000, gain=0.7, algorithm='msclean',
                                         scales=[0, 3, 10, 30], threshold=0.01)
                                         
    For the MFS clean, the psf must have number of channels >= 2 * nmoment
    
    :param dirty: Image dirty image
    :param psf: Image Point Spread Function
    :param window_shape: Window image (Bool) - clean where True
    :param mask: Window in the form of an image, overrides woindow_shape
    :param algorithm: Cleaning algorithm: 'msclean'|'hogbom'|'mfsmsclean'
    :param gain: loop gain (float) 0.7
    :param threshold: Clean threshold (0.0)
    :param fractional_threshold: Fractional threshold (0.01)
    :param scales: Scales (in pixels) for multiscale ([0, 3, 10, 30])
    :param nmoment: Number of frequency moments (default 3)
    :param findpeak: Method of finding peak in mfsclean: 'Algorithm1'|'ASKAPSoft'|'CASA'|'ARL', Default is ARL.
    :return: componentimage, residual
    
    """

    assert isinstance(dirty, Image), dirty
    assert isinstance(psf, Image), psf

    window_shape = get_parameter(kwargs, 'window_shape', None)
    if window_shape == 'quarter':
        log.info("deconvolve_cube %s: window is inner quarter" % prefix)
        qx = dirty.shape[3] // 4
        qy = dirty.shape[2] // 4
        window = numpy.zeros_like(dirty.data)
        window[..., (qy + 1):3 * qy, (qx + 1):3 * qx] = 1.0
        log.info(
            'deconvolve_cube %s: Cleaning inner quarter of each sky plane' %
            prefix)
    elif window_shape == 'no_edge':
        edge = get_parameter(kwargs, 'window_edge', 16)
        nx = dirty.shape[3]
        ny = dirty.shape[2]
        window = numpy.zeros_like(dirty.data)
        window[..., (edge + 1):(ny - edge), (edge + 1):(nx - edge)] = 1.0
        log.info(
            'deconvolve_cube %s: Window omits %d-pixel edge of each sky plane'
            % (prefix, edge))
    elif window_shape is None:
        log.info("deconvolve_cube %s: Cleaning entire image" % prefix)
        window = None
    else:
        raise ValueError("Window shape %s is not recognized" % window_shape)

    mask = get_parameter(kwargs, 'mask', None)
    if isinstance(mask, Image):
        if window is not None:
            log.warning(
                'deconvolve_cube %s: Overriding window_shape with mask image' %
                (prefix))
        window = mask.data

    psf_support = get_parameter(kwargs, 'psf_support',
                                max(dirty.shape[2] // 2, dirty.shape[3] // 2))
    if (psf_support <= psf.shape[2] // 2) and (
        (psf_support <= psf.shape[3] // 2)):
        centre = [psf.shape[2] // 2, psf.shape[3] // 2]
        psf.data = psf.data[..., (centre[0] - psf_support):(centre[0] +
                                                            psf_support),
                            (centre[1] - psf_support):(centre[1] +
                                                       psf_support)]
        log.info('deconvolve_cube %s: PSF support = +/- %d pixels' %
                 (prefix, psf_support))
        log.info('deconvolve_cube %s: PSF shape %s' %
                 (prefix, str(psf.data.shape)))

    algorithm = get_parameter(kwargs, 'algorithm', 'msclean')

    if algorithm == 'msclean':
        log.info(
            "deconvolve_cube %s: Multi-scale clean of each polarisation and channel separately"
            % prefix)
        gain = get_parameter(kwargs, 'gain', 0.7)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        scales = get_parameter(kwargs, 'scales', [0, 3, 10, 30])
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.01)
        assert 0.0 < fracthresh < 1.0

        comp_array = numpy.zeros_like(dirty.data)
        residual_array = numpy.zeros_like(dirty.data)
        for channel in range(dirty.data.shape[0]):
            for pol in range(dirty.data.shape[1]):
                if psf.data[channel, pol, :, :].max():
                    log.info(
                        "deconvolve_cube %s: Processing pol %d, channel %d" %
                        (prefix, pol, channel))
                    if window is None:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            msclean(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                    None, gain, thresh, niter, scales, fracthresh, prefix)
                    else:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            msclean(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                    window[channel, pol, :, :], gain, thresh, niter, scales, fracthresh,
                                    prefix)
                else:
                    log.info(
                        "deconvolve_cube %s: Skipping pol %d, channel %d" %
                        (prefix, pol, channel))

        comp_image = create_image_from_array(comp_array, dirty.wcs,
                                             dirty.polarisation_frame)
        residual_image = create_image_from_array(residual_array, dirty.wcs,
                                                 dirty.polarisation_frame)

    elif algorithm == 'msmfsclean' or algorithm == 'mfsmsclean' or algorithm == 'mmclean':
        findpeak = get_parameter(kwargs, "findpeak", 'ARL')

        log.info(
            "deconvolve_cube %s: Multi-scale multi-frequency clean of each polarisation separately"
            % prefix)
        nmoment = get_parameter(kwargs, "nmoment", 3)
        assert nmoment >= 1, "Number of frequency moments must be greater than or equal to one"
        nchan = dirty.shape[0]
        assert nchan > 2 * (nmoment -
                            1), "Require nchan %d > 2 * (nmoment %d - 1)" % (
                                nchan, 2 * (nmoment - 1))
        dirty_taylor = calculate_image_frequency_moments(dirty,
                                                         nmoment=nmoment)
        if nmoment > 1:
            psf_taylor = calculate_image_frequency_moments(psf,
                                                           nmoment=2 * nmoment)
        else:
            psf_taylor = calculate_image_frequency_moments(psf, nmoment=1)
        psf_peak = numpy.max(psf_taylor.data)
        dirty_taylor.data /= psf_peak
        psf_taylor.data /= psf_peak
        log.info("deconvolve_cube %s: Shape of Dirty moments image %s" %
                 (prefix, str(dirty_taylor.shape)))
        log.info("deconvolve_cube %s: Shape of PSF moments image %s" %
                 (prefix, str(psf_taylor.shape)))
        gain = get_parameter(kwargs, 'gain', 0.7)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        scales = get_parameter(kwargs, 'scales', [0, 3, 10, 30])
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1)
        assert 0.0 < fracthresh < 1.0

        comp_array = numpy.zeros(dirty_taylor.data.shape)
        residual_array = numpy.zeros(dirty_taylor.data.shape)
        for pol in range(dirty_taylor.data.shape[1]):
            if psf_taylor.data[0, pol, :, :].max():
                log.info("deconvolve_cube %s: Processing pol %d" %
                         (prefix, pol))
                if window is None:
                    comp_array[:, pol, :, :], residual_array[:, pol, :, :] = \
                        msmfsclean(dirty_taylor.data[:, pol, :, :], psf_taylor.data[:, pol, :, :],
                                   None, gain, thresh, niter, scales, fracthresh, findpeak, prefix)
                else:
                    log.info(
                        'deconvolve_cube %s: Clean window has %d valid pixels'
                        % (prefix, int(numpy.sum(window[0, pol]))))
                    comp_array[:, pol, :, :], residual_array[:, pol, :, :] = \
                        msmfsclean(dirty_taylor.data[:, pol, :, :], psf_taylor.data[:, pol, :, :],
                                   window[0, pol, :, :], gain, thresh, niter, scales, fracthresh,
                                   findpeak, prefix)
            else:
                log.info("deconvolve_cube %s: Skipping pol %d" % (prefix, pol))

        comp_image = create_image_from_array(comp_array, dirty_taylor.wcs,
                                             dirty.polarisation_frame)
        residual_image = create_image_from_array(residual_array,
                                                 dirty_taylor.wcs,
                                                 dirty.polarisation_frame)

        return_moments = get_parameter(kwargs, "return_moments", False)
        if not return_moments:
            log.info("deconvolve_cube %s: calculating spectral cubes" % prefix)
            comp_image = calculate_image_from_frequency_moments(
                dirty, comp_image)
            residual_image = calculate_image_from_frequency_moments(
                dirty, residual_image)
        else:
            log.info("deconvolve_cube %s: constructed moment cubes" % prefix)

    elif algorithm == 'hogbom':
        log.info(
            "deconvolve_cube %s: Hogbom clean of each polarisation and channel separately"
            % prefix)
        gain = get_parameter(kwargs, 'gain', 0.7)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1)
        assert 0.0 < fracthresh < 1.0

        comp_array = numpy.zeros(dirty.data.shape)
        residual_array = numpy.zeros(dirty.data.shape)
        for channel in range(dirty.data.shape[0]):
            for pol in range(dirty.data.shape[1]):
                if psf.data[channel, pol, :, :].max():
                    log.info(
                        "deconvolve_cube %s: Processing pol %d, channel %d" %
                        (prefix, pol, channel))
                    if window is None:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                   None, gain, thresh, niter, fracthresh, prefix)
                    else:
                        comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                            hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                   window[channel, pol, :, :], gain, thresh, niter, fracthresh, prefix)
                else:
                    log.info(
                        "deconvolve_cube %s: Skipping pol %d, channel %d" %
                        (prefix, pol, channel))

        comp_image = create_image_from_array(comp_array, dirty.wcs,
                                             dirty.polarisation_frame)
        residual_image = create_image_from_array(residual_array, dirty.wcs,
                                                 dirty.polarisation_frame)
    elif algorithm == 'hogbom-complex':
        log.info(
            "deconvolve_cube_complex: Hogbom-complex clean of each polarisation and channel separately"
        )
        gain = get_parameter(kwargs, 'gain', 0.7)
        assert 0.0 < gain < 2.0, "Loop gain must be between 0 and 2"
        thresh = get_parameter(kwargs, 'threshold', 0.0)
        assert thresh >= 0.0
        niter = get_parameter(kwargs, 'niter', 100)
        assert niter > 0
        fracthresh = get_parameter(kwargs, 'fractional_threshold', 0.1)
        assert 0.0 <= fracthresh < 1.0

        comp_array = numpy.zeros(dirty.data.shape)
        residual_array = numpy.zeros(dirty.data.shape)
        for channel in range(dirty.data.shape[0]):
            for pol in range(dirty.data.shape[1]):
                if pol == 0 or pol == 3:
                    if psf.data[channel, pol, :, :].max():
                        log.info(
                            "deconvolve_cube_complex: Processing pol %d, channel %d"
                            % (pol, channel))
                        if window is None:
                            comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                                hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                       None, gain, thresh, niter, fracthresh)
                        else:
                            comp_array[channel, pol, :, :], residual_array[channel, pol, :, :] = \
                                hogbom(dirty.data[channel, pol, :, :], psf.data[channel, pol, :, :],
                                       window[channel, pol, :, :], gain, thresh, niter, fracthresh)
                    else:
                        log.info(
                            "deconvolve_cube_complex: Skipping pol %d, channel %d"
                            % (pol, channel))
                if pol == 1:
                    if psf.data[channel, 1:2, :, :].max():
                        log.info(
                            "deconvolve_cube_complex: Processing pol 1 and 2, channel %d"
                            % (channel))
                        if window is None:
                            comp_array[channel, 1, :, :], comp_array[
                                channel, 2, :, :], residual_array[
                                    channel, 1, :, :], residual_array[
                                        channel, 2, :, :] = hogbom_complex(
                                            dirty.data[channel, 1, :, :],
                                            dirty.data[channel, 2, :, :],
                                            psf.data[channel, 1, :, :],
                                            psf.data[channel, 2, :, :], None,
                                            gain, thresh, niter, fracthresh)
                        else:
                            comp_array[channel, 1, :, :], comp_array[
                                channel, 2, :, :], residual_array[
                                    channel, 1, :, :], residual_array[
                                        channel, 2, :, :] = hogbom_complex(
                                            dirty.data[channel, 1, :, :],
                                            dirty.data[channel, 2, :, :],
                                            psf.data[channel, 1, :, :],
                                            psf.data[channel, 2, :, :],
                                            window[channel, pol, :, :], gain,
                                            thresh, niter, fracthresh)
                    else:
                        log.info(
                            "deconvolve_cube_complex: Skipping pol 1 and 2, channel %d"
                            % (channel))
                if pol == 2:
                    continue

        comp_image = create_image_from_array(
            comp_array,
            dirty.wcs,
            polarisation_frame=PolarisationFrame('stokesIQUV'))
        residual_image = create_image_from_array(
            residual_array,
            dirty.wcs,
            polarisation_frame=PolarisationFrame('stokesIQUV'))

    else:
        raise ValueError('deconvolve_cube %s: Unknown algorithm %s' %
                         (prefix, algorithm))

    return comp_image, residual_image
def create_image_from_visibility(vis, **kwargs) -> Image:
    """Make an empty image from params and Visibility

    :param vis:
    :param phasecentre: Phasecentre (Skycoord)
    :param channel_bandwidth: Channel width (Hz)
    :param cellsize: Cellsize (radians)
    :param npixel: Number of pixels on each axis (512)
    :param frame: Coordinate frame for WCS (ICRS)
    :param equinox: Equinox for WCS (2000.0)
    :param nchan: Number of image channels (Default is 1 -> MFS)
    :return: image
    """
    assert isinstance(vis, Visibility) or isinstance(vis, BlockVisibility), \
        "vis is not a Visibility or a BlockVisibility: %r" % (vis)

    log.info(
        "create_image_from_visibility: Parsing parameters to get definition of WCS"
    )

    imagecentre = get_parameter(kwargs, "imagecentre", vis.phasecentre)
    phasecentre = get_parameter(kwargs, "phasecentre", vis.phasecentre)

    # Spectral processing options
    ufrequency = numpy.unique(vis.frequency)
    vnchan = len(ufrequency)

    frequency = get_parameter(kwargs, "frequency", vis.frequency)
    inchan = get_parameter(kwargs, "nchan", vnchan)
    reffrequency = frequency[0] * units.Hz
    channel_bandwidth = get_parameter(
        kwargs, "channel_bandwidth",
        0.99999999999 * vis.channel_bandwidth[0]) * units.Hz

    if (inchan == vnchan) and vnchan > 1:
        log.info(
            "create_image_from_visibility: Defining %d channel Image at %s, starting frequency %s, and bandwidth %s"
            % (inchan, imagecentre, reffrequency, channel_bandwidth))
    elif (inchan == 1) and vnchan > 1:
        assert numpy.abs(channel_bandwidth.value
                         ) > 0.0, "Channel width must be non-zero for mfs mode"
        log.info(
            "create_image_from_visibility: Defining single channel MFS Image at %s, starting frequency %s, "
            "and bandwidth %s" %
            (imagecentre, reffrequency, channel_bandwidth))
    elif inchan > 1 and vnchan > 1:
        assert numpy.abs(channel_bandwidth.value
                         ) > 0.0, "Channel width must be non-zero for mfs mode"
        log.info(
            "create_image_from_visibility: Defining multi-channel MFS Image at %s, starting frequency %s, "
            "and bandwidth %s" %
            (imagecentre, reffrequency, channel_bandwidth))
    elif (inchan == 1) and (vnchan == 1):
        assert numpy.abs(channel_bandwidth.value
                         ) > 0.0, "Channel width must be non-zero for mfs mode"
        log.info(
            "create_image_from_visibility: Defining single channel Image at %s, starting frequency %s, "
            "and bandwidth %s" %
            (imagecentre, reffrequency, channel_bandwidth))
    else:
        raise ValueError(
            "create_image_from_visibility: unknown spectral mode ")

    # Image sampling options
    npixel = get_parameter(kwargs, "npixel", 512)
    uvmax = numpy.max((numpy.abs(vis.data['uvw'][:, 0:1])))
    if isinstance(vis, BlockVisibility):
        uvmax *= numpy.max(frequency) / constants.c.to('m s^-1').value
    log.info("create_image_from_visibility: uvmax = %f wavelengths" % uvmax)
    criticalcellsize = 1.0 / (uvmax * 2.0)
    log.info(
        "create_image_from_visibility: Critical cellsize = %f radians, %f degrees"
        % (criticalcellsize, criticalcellsize * 180.0 / numpy.pi))
    cellsize = get_parameter(kwargs, "cellsize", 0.5 * criticalcellsize)
    log.info(
        "create_image_from_visibility: Cellsize          = %f radians, %f degrees"
        % (cellsize, cellsize * 180.0 / numpy.pi))
    override_cellsize = get_parameter(kwargs, "override_cellsize", True)
    if override_cellsize and cellsize > criticalcellsize:
        log.info(
            "create_image_from_visibility: Resetting cellsize %f radians to criticalcellsize %f radians"
            % (cellsize, criticalcellsize))
        cellsize = criticalcellsize
    pol_frame = get_parameter(kwargs, "polarisation_frame",
                              PolarisationFrame("stokesI"))
    inpol = pol_frame.npol

    # Now we can define the WCS, which is a convenient place to hold the info above
    # Beware of python indexing order! wcs and the array have opposite ordering
    shape = [inchan, inpol, npixel, npixel]
    w = wcs.WCS(naxis=4)
    # The negation in the longitude is needed by definition of RA, DEC
    w.wcs.cdelt = [
        -cellsize * 180.0 / numpy.pi, cellsize * 180.0 / numpy.pi, 1.0,
        channel_bandwidth.to(units.Hz).value
    ]
    # The numpy definition of the phase centre of an FFT is n // 2 (0 - rel) so that's what we use for
    # the reference pixel. We have to use 0 rel everywhere.
    w.wcs.crpix = [npixel // 2 + 1, npixel // 2 + 1, 1.0, 1.0]
    w.wcs.ctype = ["RA---SIN", "DEC--SIN", 'STOKES', 'FREQ']
    w.wcs.crval = [
        phasecentre.ra.deg, phasecentre.dec.deg, 1.0,
        reffrequency.to(units.Hz).value
    ]
    w.naxis = 4

    direction_centre = pixel_to_skycoord(npixel // 2 + 1,
                                         npixel // 2 + 1,
                                         wcs=w,
                                         origin=1)
    assert direction_centre.separation(imagecentre).value < 1e-7, \
        "Image phase centre [npixel//2, npixel//2] should be %s, actually is %s" % \
        (str(imagecentre), str(direction_centre))

    w.wcs.radesys = get_parameter(kwargs, 'frame', 'ICRS')
    w.wcs.equinox = get_parameter(kwargs, 'equinox', 2000.0)

    return create_image_from_array(numpy.zeros(shape),
                                   wcs=w,
                                   polarisation_frame=pol_frame)
def invert_2d(vis: Visibility, im: Image, dopsf: bool = False, normalize: bool = True, **kwargs) \
        -> (Image, numpy.ndarray):
    """ Invert using 2D convolution function, including w projection optionally

    Use the image im as a template. Do PSF in a separate call.

    This is at the bottom of the layering i.e. all transforms are eventually expressed in terms
    of this function. . Any shifting needed is performed here.

    :param vis: Visibility to be inverted
    :param im: image template (not changed)
    :param dopsf: Make the psf instead of the dirty image
    :param normalize: Normalize by the sum of weights (True)
    :return: resulting image

    """
    if not isinstance(vis, Visibility):
        svis = coalesce_visibility(vis, **kwargs)
    else:
        svis = copy_visibility(vis)

    if dopsf:
        svis.data['vis'] = numpy.ones_like(svis.data['vis'])

    svis = shift_vis_to_image(svis, im, tangent=True, inverse=False)

    nchan, npol, ny, nx = im.data.shape

    padding = {}
    if get_parameter(kwargs, "padding", False):
        padding = {'padding': get_parameter(kwargs, "padding", False)}
    spectral_mode, vfrequencymap = get_frequency_map(svis, im)
    polarisation_mode, vpolarisationmap = get_polarisation_map(svis, im)
    uvw_mode, shape, padding, vuvwmap = get_uvw_map(svis, im, **padding)
    kernel_name, gcf, vkernellist = get_kernel_list(svis, im, **kwargs)

    # Optionally pad to control aliasing
    imgridpad = numpy.zeros(
        [nchan, npol,
         int(round(padding * ny)),
         int(round(padding * nx))],
        dtype='complex')
    imgridpad, sumwt = convolutional_grid(vkernellist, imgridpad,
                                          svis.data['vis'],
                                          svis.data['imaging_weight'], vuvwmap,
                                          vfrequencymap)

    # Fourier transform the padded grid to image, multiply by the gridding correction
    # function, and extract the unpadded inner part.

    # Normalise weights for consistency with transform
    sumwt /= float(padding * int(round(padding * nx)) * ny)

    imaginary = get_parameter(kwargs, "imaginary", False)
    if imaginary:
        log.debug("invert_2d: retaining imaginary part of dirty image")
        result = extract_mid(ifft(imgridpad) * gcf, npixel=nx)
        resultreal = create_image_from_array(result.real, im.wcs,
                                             im.polarisation_frame)
        resultimag = create_image_from_array(result.imag, im.wcs,
                                             im.polarisation_frame)
        if normalize:
            resultreal = normalize_sumwt(resultreal, sumwt)
            resultimag = normalize_sumwt(resultimag, sumwt)
        return resultreal, sumwt, resultimag
    else:
        result = extract_mid(numpy.real(ifft(imgridpad)) * gcf, npixel=nx)
        resultimage = create_image_from_array(result, im.wcs,
                                              im.polarisation_frame)
        if normalize:
            resultimage = normalize_sumwt(resultimage, sumwt)
        return resultimage, sumwt
Exemple #22
0
def ical(block_vis: BlockVisibility,
         model: Image,
         components=None,
         context='2d',
         controls=None,
         **kwargs):
    """ Post observation image, deconvolve, and self-calibrate

    :param vis:
    :param model: Model image
    :param components: Initial components
    :param context: Imaging context
    :param controls: calibration controls dictionary
    :return: model, residual, restored
    """
    nmajor = get_parameter(kwargs, 'nmajor', 5)
    log.info("ical: Performing %d major cycles" % nmajor)

    do_selfcal = get_parameter(kwargs, "do_selfcal", False)

    if controls is None:
        controls = create_calibration_controls(**kwargs)

    # The model is added to each major cycle and then the visibilities are
    # calculated from the full model
    vis = convert_blockvisibility_to_visibility(block_vis)
    block_vispred = copy_visibility(block_vis, zero=True)
    vispred = convert_blockvisibility_to_visibility(block_vispred)
    vispred.data['vis'][...] = 0.0
    visres = copy_visibility(vispred)

    vispred = predict_function(vispred, model, context=context, **kwargs)

    if components is not None:
        vispred = predict_skycomponent_visibility(vispred, components)

    if do_selfcal:
        vis, gaintables = calibrate_function(vis,
                                             vispred,
                                             'TGB',
                                             controls,
                                             iteration=-1)

    visres.data['vis'] = vis.data['vis'] - vispred.data['vis']
    dirty, sumwt = invert_function(visres, model, context=context, **kwargs)
    log.info("Maximum in residual image is %.6f" %
             (numpy.max(numpy.abs(dirty.data))))

    psf, sumwt = invert_function(visres,
                                 model,
                                 dopsf=True,
                                 context=context,
                                 **kwargs)

    thresh = get_parameter(kwargs, "threshold", 0.0)

    for i in range(nmajor):
        log.info("ical: Start of major cycle %d of %d" % (i, nmajor))
        cc, res = deconvolve_cube(dirty, psf, **kwargs)
        model.data += cc.data
        vispred.data['vis'][...] = 0.0
        vispred = predict_function(vispred, model, context=context, **kwargs)
        if do_selfcal:
            vis, gaintables = calibrate_function(vis,
                                                 vispred,
                                                 'TGB',
                                                 controls,
                                                 iteration=i)
        visres.data['vis'] = vis.data['vis'] - vispred.data['vis']

        dirty, sumwt = invert_function(visres,
                                       model,
                                       context=context,
                                       **kwargs)
        log.info("Maximum in residual image is %s" %
                 (numpy.max(numpy.abs(dirty.data))))
        if numpy.abs(dirty.data).max() < 1.1 * thresh:
            log.info("ical: Reached stopping threshold %.6f Jy" % thresh)
            break
        log.info("ical: End of major cycle")

    log.info("ical: End of major cycles")
    restored = restore_cube(model, psf, dirty, **kwargs)

    return model, dirty, restored
def deconvolve_list_serial_workflow(dirty_list,
                                    psf_list,
                                    model_imagelist,
                                    prefix='',
                                    **kwargs):
    """Create a graph for deconvolution, adding to the model

    :param dirty_list:
    :param psf_list:
    :param model_imagelist:
    :param kwargs: Parameters for functions in components
    :return: (graph for the deconvolution, graph for the flat)
    """
    nchan = len(dirty_list)

    def deconvolve(dirty, psf, model, facet, gthreshold):
        import time
        starttime = time.time()
        if prefix == '':
            lprefix = "facet %d" % facet
        else:
            lprefix = "%s, facet %d" % (prefix, facet)

        nmoments = get_parameter(kwargs, "nmoments", 0)

        if nmoments > 0:
            moment0 = calculate_image_frequency_moments(dirty)
            this_peak = numpy.max(numpy.abs(
                moment0.data[0, ...])) / dirty.data.shape[0]
        else:
            this_peak = numpy.max(numpy.abs(dirty.data[0, ...]))

        if this_peak > 1.1 * gthreshold:
            log.info(
                "deconvolve_list_serial_workflow %s: cleaning - peak %.6f > 1.1 * threshold %.6f"
                % (lprefix, this_peak, gthreshold))
            kwargs['threshold'] = gthreshold
            result, _ = deconvolve_cube(dirty, psf, prefix=lprefix, **kwargs)

            if result.data.shape[0] == model.data.shape[0]:
                result.data += model.data
            else:
                log.warning(
                    "deconvolve_list_serial_workflow %s: Initial model %s and clean result %s do not have the same shape"
                    % (lprefix, str(
                        model.data.shape[0]), str(result.data.shape[0])))

            flux = numpy.sum(result.data[0, 0, ...])
            log.info(
                '### %s, %.6f, %.6f, True, %.3f # cycle, facet, peak, cleaned flux, clean, time?'
                % (lprefix, this_peak, flux, time.time() - starttime))

            return result
        else:
            log.info(
                "deconvolve_list_serial_workflow %s: Not cleaning - peak %.6f <= 1.1 * threshold %.6f"
                % (lprefix, this_peak, gthreshold))
            log.info(
                '### %s, %.6f, %.6f, False, %.3f # cycle, facet, peak, cleaned flux, clean, time?'
                % (lprefix, this_peak, 0.0, time.time() - starttime))

            return copy_image(model)

    deconvolve_facets = get_parameter(kwargs, 'deconvolve_facets', 1)
    deconvolve_overlap = get_parameter(kwargs, 'deconvolve_overlap', 0)
    deconvolve_taper = get_parameter(kwargs, 'deconvolve_taper', None)
    if deconvolve_overlap > 0:
        deconvolve_number_facets = (deconvolve_facets - 2)**2
    else:
        deconvolve_number_facets = deconvolve_facets**2

    model_imagelist = image_gather_channels(model_imagelist)

    # Scatter the separate channel images into deconvolve facets and then gather channels for each facet.
    # This avoids constructing the entire spectral cube.
    #    dirty_list = remove_sumwt, nout=nchan)(dirty_list)
    scattered_channels_facets_dirty_list = \
        [image_scatter_facets(d[0], facets=deconvolve_facets,
                              overlap=deconvolve_overlap,
                              taper=deconvolve_taper)
         for d in dirty_list]

    # Now we do a transpose and gather
    scattered_facets_list = [
        image_gather_channels([
            scattered_channels_facets_dirty_list[chan][facet]
            for chan in range(nchan)
        ]) for facet in range(deconvolve_number_facets)
    ]

    psf_list = remove_sumwt(psf_list)
    psf_list = image_gather_channels(psf_list)

    scattered_model_imagelist = \
        image_scatter_facets(model_imagelist,
                             facets=deconvolve_facets,
                             overlap=deconvolve_overlap)

    # Work out the threshold. Need to find global peak over all dirty_list images
    threshold = get_parameter(kwargs, "threshold", 0.0)
    fractional_threshold = get_parameter(kwargs, "fractional_threshold", 0.1)
    nmoments = get_parameter(kwargs, "nmoments", 0)
    use_moment0 = nmoments > 0

    # Find the global threshold. This uses the peak in the average on the frequency axis since we
    # want to use it in a stopping criterion in a moment clean
    global_threshold = threshold_list(scattered_facets_list,
                                      threshold,
                                      fractional_threshold,
                                      use_moment0=use_moment0,
                                      prefix=prefix)

    facet_list = numpy.arange(deconvolve_number_facets).astype('int')
    scattered_results_list = [
        deconvolve(d, psf_list, m, facet, global_threshold) for d, m, facet in
        zip(scattered_facets_list, scattered_model_imagelist, facet_list)
    ]

    # Gather the results back into one image, correcting for overlaps as necessary. The taper function is is used to
    # feather the facets together
    gathered_results_list = image_gather_facets(scattered_results_list,
                                                model_imagelist,
                                                facets=deconvolve_facets,
                                                overlap=deconvolve_overlap,
                                                taper=deconvolve_taper)
    flat_list = image_gather_facets(scattered_results_list,
                                    model_imagelist,
                                    facets=deconvolve_facets,
                                    overlap=deconvolve_overlap,
                                    taper=deconvolve_taper,
                                    return_flat=True)

    return image_scatter_channels(gathered_results_list,
                                  subimages=nchan), flat_list
Exemple #24
0
def predict_list_arlexecute_workflow(vis_list, model_imagelist, context, vis_slices=1, facets=1,
                                     gcfcf=None, **kwargs):
    """Predict, iterating over both the scattered vis_list and image
    
    The visibility and image are scattered, the visibility is predicted on each part, and then the
    parts are assembled.

    :param vis_list:
    :param model_imagelist: Model used to determine image parameters
    :param vis_slices: Number of vis slices (w stack or timeslice)
    :param facets: Number of facets (per axis)
    :param context: Type of processing e.g. 2d, wstack, timeslice or facets
    :param gcfcg: tuple containing grid correction and convolution function
    :param kwargs: Parameters for functions in components
    :return: List of vis_lists
   """
    if get_parameter(kwargs, "use_serial_predict", False):
        from workflows.serial.imaging.imaging_serial import predict_list_serial_workflow
        return [arlexecute.execute(predict_list_serial_workflow, nout=1) \
                    (vis_list=[vis_list[i]],
                     model_imagelist=[model_imagelist[i]], vis_slices=vis_slices,
                     facets=facets, context=context, gcfcf=gcfcf, **kwargs)[0]
                for i, _ in enumerate(vis_list)]
    
    # Predict_2d does not clear the vis so we have to do it here.
    vis_list = zero_list_arlexecute_workflow(vis_list)
    
    c = imaging_context(context)
    vis_iter = c['vis_iterator']
    predict = c['predict']
    
    if facets % 2 == 0 or facets == 1:
        actual_number_facets = facets
    else:
        actual_number_facets = facets - 1
    
    def predict_ignore_none(vis, model, g):
        if vis is not None:
            assert isinstance(vis, Visibility), vis
            assert isinstance(model, Image), model
            return predict(vis, model, context=context, gcfcf=g, **kwargs)
        else:
            return None
    
    if gcfcf is None:
        gcfcf = [arlexecute.execute(create_pswf_convolutionfunction)(m) for m in model_imagelist]
    
    # Loop over all frequency windows
    if facets == 1:
        image_results_list = list()
        for ivis, subvis in enumerate(vis_list):
            if len(gcfcf) > 1:
                g = gcfcf[ivis]
            else:
                g = gcfcf[0]
            # Create the graph to divide an image into facets. This is by reference.
            # Create the graph to divide the visibility into slices. This is by copy.
            sub_vis_lists = arlexecute.execute(visibility_scatter, nout=vis_slices)(subvis,
                                                                                    vis_iter, vis_slices)
            
            image_vis_lists = list()
            # Loop over sub visibility
            for sub_vis_list in sub_vis_lists:
                # Predict visibility for this sub-visibility from this image
                image_vis_list = arlexecute.execute(predict_ignore_none, pure=True, nout=1) \
                    (sub_vis_list, model_imagelist[ivis], g)
                # Sum all sub-visibilities
                image_vis_lists.append(image_vis_list)
            image_results_list.append(arlexecute.execute(visibility_gather, nout=1)
                                      (image_vis_lists, subvis, vis_iter))
        
        result = image_results_list
    else:
        image_results_list_list = list()
        for ivis, subvis in enumerate(vis_list):
            # Create the graph to divide an image into facets. This is by reference.
            facet_lists = arlexecute.execute(image_scatter_facets, nout=actual_number_facets ** 2)(
                model_imagelist[ivis],
                facets=facets)
            # Create the graph to divide the visibility into slices. This is by copy.
            sub_vis_lists = arlexecute.execute(visibility_scatter, nout=vis_slices)\
                (subvis, vis_iter, vis_slices)
            
            facet_vis_lists = list()
            # Loop over sub visibility
            for sub_vis_list in sub_vis_lists:
                facet_vis_results = list()
                # Loop over facets
                for facet_list in facet_lists:
                    # Predict visibility for this subvisibility from this facet
                    facet_vis_list = arlexecute.execute(predict_ignore_none, pure=True, nout=1)\
                        (sub_vis_list, facet_list, None)
                    facet_vis_results.append(facet_vis_list)
                # Sum the current sub-visibility over all facets
                facet_vis_lists.append(arlexecute.execute(sum_predict_results)(facet_vis_results))
            # Sum all sub-visibilities
            image_results_list_list.append(
                arlexecute.execute(visibility_gather, nout=1)(facet_vis_lists, subvis, vis_iter))
        
        result = image_results_list_list
    return arlexecute.optimize(result)
Exemple #25
0
def ical_list_serial_workflow(vis_list, model_imagelist, context, vis_slices=1, facets=1,
                              gcfcf=None, calibration_context='TG', do_selfcal=True, **kwargs):
    """Run ICAL pipeline

    :param vis_list:
    :param model_imagelist:
    :param context: imaging context e.g. '2d'
    :param calibration_context: Sequence of calibration steps e.g. TGB
    :param do_selfcal: Do the selfcalibration?
    :param kwargs: Parameters for functions in components
    :return:
    """
    gt_list = list()

    if gcfcf is None:
        gcfcf = [create_pswf_convolutionfunction(model_imagelist[0])]
    
    psf_imagelist = invert_list_serial_workflow(vis_list, model_imagelist, dopsf=True, context=context,
                                                vis_slices=vis_slices, facets=facets, gcgcf=gcfcf, **kwargs)
    
    model_vislist = [copy_visibility(v, zero=True) for v in vis_list]
    
    if do_selfcal:
        cal_vis_list = [copy_visibility(v) for v in vis_list]
    else:
        cal_vis_list = vis_list
    
    if do_selfcal:
        # Make the predicted visibilities, selfcalibrate against it correcting the gains, then
        # form the residual visibility, then make the residual image
        model_vislist = predict_list_serial_workflow(model_vislist, model_imagelist,
                                                     context=context, vis_slices=vis_slices, facets=facets,
                                                     gcgcf=gcfcf, **kwargs)
        cal_vis_list, gt_list = calibrate_list_serial_workflow(cal_vis_list, model_vislist,
                                                         calibration_context=calibration_context, **kwargs)
        residual_vislist = subtract_list_serial_workflow(cal_vis_list, model_vislist)
        residual_imagelist = invert_list_serial_workflow(residual_vislist, model_imagelist,
                                                         context=context, dopsf=False,
                                                         vis_slices=vis_slices, facets=facets, gcgcf=gcfcf,
                                                         iteration=0, **kwargs)
    else:
        # If we are not selfcalibrating it's much easier and we can avoid an unnecessary round of gather/scatter
        # for visibility partitioning such as timeslices and wstack.
        residual_imagelist = residual_list_serial_workflow(cal_vis_list, model_imagelist, context=context,
                                                           vis_slices=vis_slices, facets=facets, gcgcf=gcfcf,
                                                           **kwargs)
    
    deconvolve_model_imagelist, _ = deconvolve_list_serial_workflow(residual_imagelist, psf_imagelist,
                                                                    model_imagelist,
                                                                    prefix='cycle 0', **kwargs)
    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            if do_selfcal:
                model_vislist = predict_list_serial_workflow(model_vislist, deconvolve_model_imagelist,
                                                             context=context, vis_slices=vis_slices, facets=facets,
                                                             gcgcf=gcfcf, **kwargs)
                cal_vis_list = [copy_visibility(v) for v in vis_list]
                cal_vis_list, gt_list = calibrate_list_serial_workflow(cal_vis_list, model_vislist,
                                                                 calibration_context=calibration_context,
                                                                 iteration=cycle, **kwargs)
                residual_vislist = subtract_list_serial_workflow(cal_vis_list, model_vislist)
                residual_imagelist = invert_list_serial_workflow(residual_vislist, model_imagelist,
                                                                 context=context,
                                                                 vis_slices=vis_slices, facets=facets,
                                                                 gcgcf=gcfcf, **kwargs)
            else:
                residual_imagelist = residual_list_serial_workflow(cal_vis_list, deconvolve_model_imagelist,
                                                                   context=context,
                                                                   vis_slices=vis_slices, facets=facets,
                                                                   gcgcf=gcfcf,
                                                                   **kwargs)
            
            prefix = "cycle %d" % (cycle + 1)
            deconvolve_model_imagelist, _ = deconvolve_list_serial_workflow(residual_imagelist, psf_imagelist,
                                                                            deconvolve_model_imagelist,
                                                                            prefix=prefix,
                                                                            **kwargs)
    residual_imagelist = residual_list_serial_workflow(cal_vis_list, deconvolve_model_imagelist, context=context,
                                                       vis_slices=vis_slices, facets=facets, gcgcf=gcfcf, **kwargs)
    restore_imagelist = restore_list_serial_workflow(deconvolve_model_imagelist, psf_imagelist, residual_imagelist)
    return deconvolve_model_imagelist, residual_imagelist, restore_imagelist, gt_list
Exemple #26
0
def invert_list_arlexecute_workflow(vis_list, template_model_imagelist, context, dopsf=False, normalize=True,
                                    facets=1, vis_slices=1, gcfcf=None, **kwargs):
    """ Sum results from invert, iterating over the scattered image and vis_list

    :param vis_list:
    :param template_model_imagelist: Model used to determine image parameters
    :param dopsf: Make the PSF instead of the dirty image
    :param facets: Number of facets
    :param normalize: Normalize by sumwt
    :param vis_slices: Number of slices
    :param context: Imaging context
    :param gcfcg: tuple containing grid correction and convolution function
    :param kwargs: Parameters for functions in components
    :return: List of (image, sumwt) tuple
   """
    
    # Use serial invert for each element of the visibility list. This means that e.g. iteration
    # through w-planes or timeslices is done sequentially thus not incurring the memory cost
    # of doing all at once.
    if get_parameter(kwargs, "use_serial_invert", False):
        from workflows.serial.imaging.imaging_serial import invert_list_serial_workflow
        return [arlexecute.execute(invert_list_serial_workflow, nout=1) \
                    (vis_list=[vis_list[i]], template_model_imagelist=[template_model_imagelist[i]],
                     context=context, dopsf=dopsf, normalize=normalize, vis_slices=vis_slices,
                     facets=facets, gcfcf=gcfcf, **kwargs)[0]
                for i, _ in enumerate(vis_list)]
    
    if not isinstance(template_model_imagelist, collections.Iterable):
        template_model_imagelist = [template_model_imagelist]
    
    c = imaging_context(context)
    vis_iter = c['vis_iterator']
    invert = c['invert']
    
    if facets % 2 == 0 or facets == 1:
        actual_number_facets = facets
    else:
        actual_number_facets = max(1, (facets - 1))
    
    def gather_image_iteration_results(results, template_model):
        result = create_empty_image_like(template_model)
        i = 0
        sumwt = numpy.zeros([template_model.nchan, template_model.npol])
        for dpatch in image_scatter_facets(result, facets=facets):
            assert i < len(results), "Too few results in gather_image_iteration_results"
            if results[i] is not None:
                assert len(results[i]) == 2, results[i]
                dpatch.data[...] = results[i][0].data[...]
                sumwt += results[i][1]
                i += 1
        return result, sumwt
    
    def invert_ignore_none(vis, model, gg):
        if vis is not None:
            return invert(vis, model, context=context, dopsf=dopsf, normalize=normalize,
                          gcfcf=gg, **kwargs)
        else:
            return create_empty_image_like(model), numpy.zeros([model.nchan, model.npol])
    
    # If we are doing facets, we need to create the gcf for each image
    if gcfcf is None and facets == 1:
        gcfcf = [arlexecute.execute(create_pswf_convolutionfunction)(template_model_imagelist[0])]
    
    # Loop over all vis_lists independently
    results_vislist = list()
    if facets == 1:
        for ivis, sub_vis_list in enumerate(vis_list):
            if len(gcfcf) > 1:
                g = gcfcf[ivis]
            else:
                g = gcfcf[0]
            # Create the graph to divide the visibility into slices. This is by copy.
            sub_sub_vis_lists = arlexecute.execute(visibility_scatter, nout=vis_slices)\
                (sub_vis_list, vis_iter, vis_slices=vis_slices)
            
            # Iterate within each sub_sub_vis_list
            vis_results = list()
            for sub_sub_vis_list in sub_sub_vis_lists:
                vis_results.append(arlexecute.execute(invert_ignore_none, pure=True)
                                   (sub_sub_vis_list, template_model_imagelist[ivis], g))
            results_vislist.append(sum_invert_results_arlexecute(vis_results))

        result = results_vislist
    else:
        for ivis, sub_vis_list in enumerate(vis_list):
            # Create the graph to divide an image into facets. This is by reference.
            facet_lists = arlexecute.execute(image_scatter_facets, nout=actual_number_facets ** 2)(
                template_model_imagelist[
                    ivis],
                facets=facets)
            # Create the graph to divide the visibility into slices. This is by copy.
            sub_sub_vis_lists = arlexecute.execute(visibility_scatter, nout=vis_slices)\
                (sub_vis_list, vis_iter, vis_slices=vis_slices)
            
            # Iterate within each vis_list
            vis_results = list()
            for sub_sub_vis_list in sub_sub_vis_lists:
                facet_vis_results = list()
                for facet_list in facet_lists:
                    facet_vis_results.append(
                        arlexecute.execute(invert_ignore_none, pure=True)(sub_sub_vis_list, facet_list, None))
                vis_results.append(arlexecute.execute(gather_image_iteration_results, nout=1)
                                   (facet_vis_results, template_model_imagelist[ivis]))
            results_vislist.append(sum_invert_results_arlexecute(vis_results))
        
        result = results_vislist
    return arlexecute.optimize(result)
Exemple #27
0
def deconvolve_list_arlexecute_workflow(dirty_list, psf_list, model_imagelist, prefix='', mask=None, **kwargs):
    """Create a graph for deconvolution, adding to the model

    :param dirty_list:
    :param psf_list:
    :param model_imagelist:
    :param prefix: Informative prefix to log messages
    :param mask: Mask for deconvolution
    :param kwargs: Parameters for functions in components
    :return: graph for the deconvolution
    """
    nchan = len(dirty_list)
    # Number of moments. 1 is the sum.
    nmoment = get_parameter(kwargs, "nmoment", 1)
    
    if get_parameter(kwargs, "use_serial_clean", False):
        from workflows.serial.imaging.imaging_serial import deconvolve_list_serial_workflow
        return arlexecute.execute(deconvolve_list_serial_workflow, nout=nchan) \
            (dirty_list, psf_list, model_imagelist, prefix=prefix, mask=mask, **kwargs)
    
    def deconvolve(dirty, psf, model, facet, gthreshold, msk=None):
        if prefix == '':
            lprefix = "facet %d" % facet
        else:
            lprefix = "%s, facet %d" % (prefix, facet)
        
        if nmoment > 0:
            moment0 = calculate_image_frequency_moments(dirty)
            this_peak = numpy.max(numpy.abs(moment0.data[0, ...])) / dirty.data.shape[0]
        else:
            ref_chan = dirty.data.shape[0] // 2
            this_peak = numpy.max(numpy.abs(dirty.data[ref_chan, ...]))
        
        if this_peak > 1.1 * gthreshold:
            kwargs['threshold'] = gthreshold
            result, _ = deconvolve_cube(dirty, psf, prefix=lprefix, mask=msk, **kwargs)
            
            if result.data.shape[0] == model.data.shape[0]:
                result.data += model.data
            return result
        else:
            return copy_image(model)
    
    deconvolve_facets = get_parameter(kwargs, 'deconvolve_facets', 1)
    deconvolve_overlap = get_parameter(kwargs, 'deconvolve_overlap', 0)
    deconvolve_taper = get_parameter(kwargs, 'deconvolve_taper', None)
    if deconvolve_facets > 1 and deconvolve_overlap > 0:
        deconvolve_number_facets = (deconvolve_facets - 2) ** 2
    else:
        deconvolve_number_facets = deconvolve_facets ** 2
    
    deconvolve_model_imagelist = arlexecute.execute(image_gather_channels, nout=1)(model_imagelist)
    
    # Scatter the separate channel images into deconvolve facets and then gather channels for each facet.
    # This avoids constructing the entire spectral cube.
    dirty_list_trimmed = arlexecute.execute(remove_sumwt, nout=nchan)(dirty_list)
    scattered_channels_facets_dirty_list = \
        [arlexecute.execute(image_scatter_facets, nout=deconvolve_number_facets)(d, facets=deconvolve_facets,
                                                                                 overlap=deconvolve_overlap,
                                                                                 taper=deconvolve_taper)
         for d in dirty_list_trimmed]
    
    # Now we do a transpose and gather
    scattered_facets_list = [
        arlexecute.execute(image_gather_channels, nout=1)([scattered_channels_facets_dirty_list[chan][facet]
                                                           for chan in range(nchan)])
        for facet in range(deconvolve_number_facets)]
    
    psf_list_trimmed = arlexecute.execute(remove_sumwt, nout=nchan)(psf_list)
    psf_list_trimmed = arlexecute.execute(image_gather_channels, nout=1)(psf_list_trimmed)
    
    scattered_model_imagelist = \
        arlexecute.execute(image_scatter_facets, nout=deconvolve_number_facets)(deconvolve_model_imagelist,
                                                                                facets=deconvolve_facets,
                                                                                overlap=deconvolve_overlap)
    # Work out the threshold. Need to find global peak over all dirty_list images
    threshold = get_parameter(kwargs, "threshold", 0.0)
    fractional_threshold = get_parameter(kwargs, "fractional_threshold", 0.1)
    nmoment = get_parameter(kwargs, "nmoment", 1)
    use_moment0 = nmoment > 0
    
    # Find the global threshold. This uses the peak in the average on the frequency axis since we
    # want to use it in a stopping criterion in a moment clean
    global_threshold = arlexecute.execute(threshold_list, nout=1)(scattered_facets_list, threshold,
                                                                  fractional_threshold,
                                                                  use_moment0=use_moment0, prefix=prefix)
    
    facet_list = numpy.arange(deconvolve_number_facets).astype('int')
    if mask is None:
        scattered_results_list = [
            arlexecute.execute(deconvolve, nout=1)(d, psf_list_trimmed, m, facet, global_threshold)
            for d, m, facet in zip(scattered_facets_list, scattered_model_imagelist, facet_list)]
    else:
        mask_list = \
            arlexecute.execute(image_scatter_facets, nout=deconvolve_number_facets)(mask,
                                                                                    facets=deconvolve_facets,
                                                                                    overlap=deconvolve_overlap)
        scattered_results_list = [
            arlexecute.execute(deconvolve, nout=1)(d, psf_list_trimmed, m, facet, global_threshold, msk)
            for d, m, facet, msk in zip(scattered_facets_list, scattered_model_imagelist, facet_list, mask_list)]
    
    # Gather the results back into one image, correcting for overlaps as necessary. The taper function is is used to
    # feather the facets together
    gathered_results_list = arlexecute.execute(image_gather_facets, nout=1)(scattered_results_list,
                                                                            deconvolve_model_imagelist,
                                                                            facets=deconvolve_facets,
                                                                            overlap=deconvolve_overlap,
                                                                            taper=deconvolve_taper)
    result_list = arlexecute.execute(image_scatter_channels, nout=nchan)(gathered_results_list, subimages=nchan)
    
    return arlexecute.optimize(result_list)
Exemple #28
0
def deconvolve_list_arlexecute_workflow(dirty_list, psf_list, model_imagelist, prefix='', mask=None, **kwargs):
    """Create a graph for deconvolution, adding to the model

    :param dirty_list:
    :param psf_list:
    :param model_imagelist:
    :param prefix: Informative prefix to log messages
    :param mask: Mask for deconvolution
    :param kwargs: Parameters for functions in components
    :return: graph for the deconvolution
    """
    nchan = len(dirty_list)
    # Number of moments. 1 is the sum.
    nmoment = get_parameter(kwargs, "nmoment", 1)
    
    if get_parameter(kwargs, "use_serial_clean", False):
        from workflows.serial.imaging.imaging_serial import deconvolve_list_serial_workflow
        return arlexecute.execute(deconvolve_list_serial_workflow, nout=nchan) \
            (dirty_list, psf_list, model_imagelist, prefix=prefix, mask=mask, **kwargs)
    
    def deconvolve(dirty, psf, model, facet, gthreshold, msk=None):
        if prefix == '':
            lprefix = "facet %d" % facet
        else:
            lprefix = "%s, facet %d" % (prefix, facet)
        
        if nmoment > 0:
            moment0 = calculate_image_frequency_moments(dirty)
            this_peak = numpy.max(numpy.abs(moment0.data[0, ...])) / dirty.data.shape[0]
        else:
            ref_chan = dirty.data.shape[0] // 2
            this_peak = numpy.max(numpy.abs(dirty.data[ref_chan, ...]))
        
        if this_peak > 1.1 * gthreshold:
            kwargs['threshold'] = gthreshold
            result, _ = deconvolve_cube(dirty, psf, prefix=lprefix, mask=msk, **kwargs)
            
            if result.data.shape[0] == model.data.shape[0]:
                result.data += model.data
            return result
        else:
            return copy_image(model)
    
    deconvolve_facets = get_parameter(kwargs, 'deconvolve_facets', 1)
    deconvolve_overlap = get_parameter(kwargs, 'deconvolve_overlap', 0)
    deconvolve_taper = get_parameter(kwargs, 'deconvolve_taper', None)
    if deconvolve_facets > 1 and deconvolve_overlap > 0:
        deconvolve_number_facets = (deconvolve_facets - 2) ** 2
    else:
        deconvolve_number_facets = deconvolve_facets ** 2
    
    scattered_channels_facets_model_list = \
        [arlexecute.execute(image_scatter_facets, nout=deconvolve_number_facets)(m, facets=deconvolve_facets,
                                                                                 overlap=deconvolve_overlap,
                                                                                 taper=deconvolve_taper)
         for m in model_imagelist]
    scattered_facets_model_list = [
        arlexecute.execute(image_gather_channels, nout=1)([scattered_channels_facets_model_list[chan][facet]
                                                           for chan in range(nchan)])
        for facet in range(deconvolve_number_facets)]
    
    # Scatter the separate channel images into deconvolve facets and then gather channels for each facet.
    # This avoids constructing the entire spectral cube.
    # i.e. SCATTER BY FACET then SCATTER BY CHANNEL
    dirty_list_trimmed = arlexecute.execute(remove_sumwt, nout=nchan)(dirty_list)
    scattered_channels_facets_dirty_list = \
        [arlexecute.execute(image_scatter_facets, nout=deconvolve_number_facets)(d, facets=deconvolve_facets,
                                                                                 overlap=deconvolve_overlap,
                                                                                 taper=deconvolve_taper)
         for d in dirty_list_trimmed]
    scattered_facets_dirty_list = [
        arlexecute.execute(image_gather_channels, nout=1)([scattered_channels_facets_dirty_list[chan][facet]
                                                           for chan in range(nchan)])
        for facet in range(deconvolve_number_facets)]
    
    psf_list_trimmed = arlexecute.execute(remove_sumwt, nout=nchan)(psf_list)
    
    def extract_psf(psf, facets):
        spsf = create_empty_image_like(psf)
        cx = spsf.shape[3] // 2
        cy = spsf.shape[2] // 2
        wx = spsf.shape[3] // facets
        wy = spsf.shape[2] // facets
        xbeg = cx - wx // 2
        xend = cx + wx // 2
        ybeg = cy - wy // 2
        yend = cy + wy // 2
        spsf.data = psf.data[..., ybeg:yend, xbeg:xend]
        spsf.wcs.wcs.crpix[0] -= xbeg
        spsf.wcs.wcs.crpix[1] -= ybeg
        return spsf
    
    psf_list_trimmed = [arlexecute.execute(extract_psf)(p, deconvolve_facets) for p in psf_list_trimmed]
    psf_centre = arlexecute.execute(image_gather_channels, nout=1)([psf_list_trimmed[chan]
                                                                                   for chan in range(nchan)])
    
    # Work out the threshold. Need to find global peak over all dirty_list images
    threshold = get_parameter(kwargs, "threshold", 0.0)
    fractional_threshold = get_parameter(kwargs, "fractional_threshold", 0.1)
    nmoment = get_parameter(kwargs, "nmoment", 1)
    use_moment0 = nmoment > 0
    
    # Find the global threshold. This uses the peak in the average on the frequency axis since we
    # want to use it in a stopping criterion in a moment clean
    global_threshold = arlexecute.execute(threshold_list, nout=1)(scattered_facets_dirty_list, threshold,
                                                                  fractional_threshold,
                                                                  use_moment0=use_moment0, prefix=prefix)
    
    facet_list = numpy.arange(deconvolve_number_facets).astype('int')
    if mask is None:
        scattered_results_list = [
            arlexecute.execute(deconvolve, nout=1)(d, psf_centre, m, facet,
                                                   global_threshold)
            for d, m, facet in zip(scattered_facets_dirty_list, scattered_facets_model_list, facet_list)]
    else:
        mask_list = \
            arlexecute.execute(image_scatter_facets, nout=deconvolve_number_facets)(mask,
                                                                                    facets=deconvolve_facets,
                                                                                    overlap=deconvolve_overlap)
        scattered_results_list = [
            arlexecute.execute(deconvolve, nout=1)(d, psf_centre, m, facet,
                                                   global_threshold, msk)
            for d, m, facet, msk in
            zip(scattered_facets_dirty_list, scattered_facets_model_list, facet_list, mask_list)]
    
    # We want to avoid constructing the entire cube so we do the inverse of how we got here:
    # i.e. SCATTER BY CHANNEL then GATHER BY FACET
    # Gather the results back into one image, correcting for overlaps as necessary. The taper function is is used to
    # feather the facets together
    # gathered_results_list = arlexecute.execute(image_gather_facets, nout=1)(scattered_results_list,
    #                                                                         deconvolve_model_imagelist,
    #                                                                         facets=deconvolve_facets,
    #                                                                         overlap=deconvolve_overlap,
    #                                                                         taper=deconvolve_taper)
    # result_list = arlexecute.execute(image_scatter_channels, nout=nchan)(gathered_results_list, subimages=nchan)
    
    scattered_channel_results_list = [arlexecute.execute(image_scatter_channels, nout=nchan)(scat, subimages=nchan)
                                      for scat in scattered_results_list]
    
    # The structure is now [[channels] for facets]. We do the reverse transpose to the one above.
    result_list = [arlexecute.execute(image_gather_facets, nout=1)([scattered_channel_results_list[facet][chan]
                                                                    for facet in range(deconvolve_number_facets)],
                                                                   model_imagelist[chan], facets=deconvolve_facets,
                                                                   overlap=deconvolve_overlap)
                   for chan in range(nchan)]
    
    return arlexecute.optimize(result_list)
Exemple #29
0
def invert_list_mpi_workflow(vis_list,
                             template_model_imagelist,
                             context,
                             dopsf=False,
                             normalize=True,
                             facets=1,
                             vis_slices=1,
                             gcfcf=None,
                             comm=MPI.COMM_WORLD,
                             **kwargs):
    """ Sum results from invert, iterating over the scattered image and vis_list

    :param vis_list: Only full for rank==0
    :param template_model_imagelist: Model used to determine image parameters
    (in rank=0)
    :param dopsf: Make the PSF instead of the dirty image
    :param facets: Number of facets
    :param normalize: Normalize by sumwt
    :param vis_slices: Number of slices
    :param context: Imaging context
    :param gcfcg: tuple containing grid correction and convolution function (in
    rank=0)
    :param comm:MPI Communicator
    :param kwargs: Parameters for functions in components
    :return: List of (image, sumwt) tuple
   """

    # NOTE: Be careful with normalization as normalizing parts is not the
    # same as normalizing the whole, normalization happens for each image in a
    # frequency window (in this versio we only parallelize at freqwindows
    def concat_tuples(list_of_tuples):
        if len(list_of_tuples) < 2:
            result_list = list_of_tuples
        else:
            result_list = list_of_tuples[0]
            for l in list_of_tuples[1:]:
                result_list += l
        return result_list

    rank = comm.Get_rank()
    size = comm.Get_size()
    log.info(
        '%d: In invert_list_mpi_workflow: %d elements in vis_list %d in model'
        % (rank, len(vis_list), len(template_model_imagelist)))

    assert get_parameter(kwargs, "use_serial_invert",
                         True), "Only freq paralellization implemented"
    #if get_parameter(kwargs, "use_serial_invert", False):
    if get_parameter(kwargs, "use_serial_invert", True):
        from workflows.serial.imaging.imaging_serial import invert_list_serial_workflow

        results_vislist = list()
        # Distribute visibilities and model by freq
        sub_vis_list = numpy.array_split(vis_list, size)
        sub_vis_list = comm.scatter(sub_vis_list, root=0)
        sub_template_model_imagelist = numpy.array_split(
            template_model_imagelist, size)
        sub_template_model_imagelist = comm.scatter(
            sub_template_model_imagelist, root=0)
        if gcfcf is not None:
            sub_gcfcf = numpy.array_split(gcfcf, size)
            sub_gcfcf = comm.scatter(sub_gcfcf, root=0)
        isinstance(sub_vis_list[0], Visibility)
        sub_results_vislist = [
            invert_list_serial_workflow(
                vis_list=[sub_vis_list[i]],
                template_model_imagelist=[sub_template_model_imagelist[i]],
                context=context,
                dopsf=dopsf,
                normalize=normalize,
                vis_slices=vis_slices,
                facets=facets,
                gcfcf=gcfcf,
                **kwargs)[0] for i, _ in enumerate(sub_vis_list)
        ]
        #print("%d sub_results_vislist" %rank,sub_results_vislist)
        results_vislist = comm.gather(sub_results_vislist, root=0)
        #print("%d results_vislist before concatenate"%rank,results_vislist)
        if rank == 0:
            #image_results_list_list=[x for x in image_results_list_list if x]
            #results_vislist=numpy.concatenate(results_vislist)
            # TODO: concatenate dos not concatenate well a list of tuples
            # it returns a 2d array instead of a concatenated list of tuples

            results_vislist = concat_tuples(results_vislist)
        else:
            results_vislist = list()
    #print("%d results_vislist"%rank,results_vislist)
    return results_vislist
def create_named_configuration(name: str = 'LOWBD2',
                               **kwargs) -> Configuration:
    """ Standard configurations e.g. LOWBD2, MIDBD2

    :param name: name of Configuration LOWBD2, LOWBD1, LOFAR, VLAA, ASKAP
    :param rmax: Maximum distance of station from the average (m)
    :return:
    
    For LOWBD2, setting rmax gives the following number of stations
    100.0       13
    300.0       94
    1000.0      251
    3000.0      314
    10000.0     398
    30000.0     476
    100000.0    512
    """

    if name == 'LOWBD2':
        location = EarthLocation(lon="116.76444824",
                                 lat="-26.824722084",
                                 height=300.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_file(
            antfile=arl_path("data/configurations/LOWBD2.csv"),
            location=location,
            mount='xy',
            names='LOWBD2_%d',
            diameter=35.0,
            name=name,
            **kwargs)
    elif name == 'LOWBD1':
        location = EarthLocation(lon="116.76444824",
                                 lat="-26.824722084",
                                 height=300.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_file(
            antfile=arl_path("data/configurations/LOWBD1.csv"),
            location=location,
            mount='xy',
            names='LOWBD1_%d',
            diameter=35.0,
            name=name,
            **kwargs)
    elif name == 'LOWBD2-CORE':
        location = EarthLocation(lon="116.76444824",
                                 lat="-26.824722084",
                                 height=300.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_file(
            antfile=arl_path("data/configurations/LOWBD2-CORE.csv"),
            location=location,
            mount='xy',
            names='LOWBD2_%d',
            diameter=35.0,
            name=name,
            **kwargs)
    elif (name == 'LOW') or (name == 'LOWR3'):
        location = EarthLocation(lon="116.76444824",
                                 lat="-26.824722084",
                                 height=300.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_MIDfile(
            antfile=arl_path("data/configurations/ska1low_local.cfg"),
            mount='xy',
            name=name,
            location=location,
            **kwargs)
    elif (name == 'MID') or (name == "MIDR5"):
        location = EarthLocation(lon="21.443803", lat="-30.712925", height=0.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_MIDfile(
            antfile=arl_path("data/configurations/ska1mid_local.cfg"),
            mount='azel',
            name=name,
            location=location,
            **kwargs)
    elif name == 'ASKAP':
        location = EarthLocation(lon="+116.6356824",
                                 lat="-26.7013006",
                                 height=377.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_file(
            antfile=arl_path("data/configurations/A27CR3P6B.in.csv"),
            mount='equatorial',
            names='ASKAP_%d',
            diameter=12.0,
            name=name,
            location=location,
            **kwargs)
    elif name == 'LOFAR':
        location = EarthLocation(x=[3826923.9] * u.m,
                                 y=[460915.1] * u.m,
                                 z=[5064643.2] * u.m)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        assert get_parameter(kwargs, "meta", False) is False
        fc = create_LOFAR_configuration(
            antfile=arl_path("data/configurations/LOFAR.csv"),
            location=location)
    elif name == 'VLAA':
        location = EarthLocation(lon="-107.6184", lat="34.0784", height=2124.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_file(
            antfile=arl_path("data/configurations/VLA_A_hor_xyz.csv"),
            location=location,
            mount='azel',
            names='VLA_%d',
            diameter=25.0,
            name=name,
            **kwargs)
    elif name == 'VLAA_north':
        location = EarthLocation(lon="-107.6184", lat="90.000", height=0.0)
        log.info("create_named_configuration: %s\n\t%s\n\t%s" %
                 (name, location.geocentric, location.geodetic))
        fc = create_configuration_from_file(
            antfile=arl_path("data/configurations/VLA_A_hor_xyz.csv"),
            location=location,
            mount='azel',
            names='VLA_%d',
            diameter=25.0,
            name=name,
            **kwargs)
    else:
        raise ValueError("No such Configuration %s" % name)
    return fc