def test_saving(self): data_lines = \ [ 'Temperature1: 56', 'Temperature2=54 ', 'Temperature3=53', 'Temperature3=52', 'Temperature1=666', 'Temperature1', 'Error', 'Temperature1=666degrees', 'Temperature4=No data', 'Temperature1=54', 'Temperature1=55', 'Temperature4=40', 'Temperature3=55', ] parser = DataParser() for line in data_lines: parser.parse(line) parser.save_results('mixed_json_results.json') self.assertTrue( filecmp.cmp('mixed_json_results.json', 'json_files//mixed_json_results.json'), 'Files are different') os.remove('mixed_json_results.json')
def test_good_data(self): data_lines = \ [ 'Temperature1=56', 'Temperature2=54 ', 'Temperature3=53', 'Temperature3=52', 'Temperature1=666', ] expected_result = \ { 1: [ 56, 666 ], 2: [ 54 ], 3: [ 53, 52 ], } parser = DataParser() for line in data_lines: parser.parse(line) parsing_results = parser.get_results() self.assertEqual(expected_result, parsing_results)
def test_bad_data(self): data_lines = \ [ 'Temperature1: 56', 'Temperature2=54 ', 'Temperature3=53', 'Temperature3=52', 'Temperature1=666', 'Temperature1', 'Error', 'Temperature1=666degrees', 'Temperature4=No data', ] expected_result = \ { 1: [ 666 ], 2: [ 54 ], 3: [ 53, 52 ], } parser = DataParser() for line in data_lines: parser.parse(line) parsing_results = parser.get_results() self.assertEqual(expected_result, parsing_results)
def main(args): data_parser = DataParser(data_prefix=args.data_prefix, images_dirpath=args.images_dirpath, masks_dirpath=args.masks_dirpath, img_masks_filepath=args.img_masks_filepath, contours_type=args.contours_type, logs_prefix=args.logs_prefix, visualize_contours=args.visualize_contours) data_parser.parse()
def main(_): feat_dict = FeatureDictionary() print("feature_size: %d" % feat_dict.feature_size) print("field_size: %d" % feat_dict.field_size) print(feat_dict.col2feat_id.keys()) dataparser = DataParser(feat_dict, FLAGS.label) train_ids, train_vals, train_labels = dataparser.parse(infile="%s\\train_sample.csv" % FLAGS.data_dir) print("len of train: %d" % len(train_ids)) test_ids, test_vals, test_labels = dataparser.parse(infile="%s\\test_sample.csv" % FLAGS.data_dir) print("len of test: %d" % len(test_ids)) # ------bulid Tasks------ model_params = { "field_size": feat_dict.field_size, "feature_size": feat_dict.feature_size, "embedding_size": FLAGS.embedding_size, "learning_rate": FLAGS.learning_rate, "l2_reg": FLAGS.l2_reg, "deep_layers": FLAGS.deep_layers, "dropout": FLAGS.dropout, "experts_num": 3, "experts_units": 32, "use_experts_bias": True, "use_gate_bias": True } print(model_params) DeepFM = build_model_estimator(model_params) # DeepFM = tf.contrib.estimator.add_metrics(DeepFM, my_auc) if FLAGS.task_type == 'train': train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(train_ids, train_vals, train_labels, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size)) eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(test_ids, test_vals, test_labels, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200) tf.estimator.train_and_evaluate(DeepFM, train_spec, eval_spec) results = DeepFM.evaluate( input_fn=lambda: input_fn(test_ids, test_vals, test_labels, num_epochs=1, batch_size=FLAGS.batch_size)) for key in results: log.info("%s : %s" % (key, results[key])) elif FLAGS.task_type == 'eval': results = DeepFM.evaluate(input_fn=lambda: input_fn(test_ids, test_vals, test_labels, num_epochs=1, batch_size=FLAGS.batch_size)) for key in results: log.info("%s : %s" % (key, results[key])) elif FLAGS.task_type == 'infer': preds = DeepFM.predict(input_fn=lambda: input_fn(test_ids, test_vals, test_labels, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys="prob") with open(FLAGS.data_dir+"/pred.txt", "w") as fo: for prob in preds: fo.write("%f\n" % (prob['prob']))
class DataSession(QObject): signal_start_background_job = pyqtSignal() def __init__(self, plot_painter, params, port_settings=DEFAULT_PORT_SETTINGS): super().__init__() self.data_parser = DataParser(params) self.plot_painter = plot_painter self.worker = SerialWorker(port_settings) self.thread = QThread() self.worker.moveToThread(self.thread) self.worker.read_data_signal.connect(self.add_data) self.signal_start_background_job.connect(self.worker.run) def run(self): self.thread.start() self.signal_start_background_job.emit() def add_data(self, sensor_data): logger.debug(f"Data was read: {sensor_data}") parser_data = self.data_parser.parse(sensor_data) if parser_data: self.plot_painter.add_data(parser_data) # TODO: save to DB def stop(self, additional_params): self.worker.stop() self.thread.quit() self.thread.wait(1000) json_file_name = ( "data_" + datetime.datetime.now().strftime("%Y-%m-%d %H-%M-%S") + ".json" ) self.data_parser.save_results(json_file_name, additional_params)
ccer.setCoordOrigin(0) ccer.convertCoord([0,1,2,3,4,5,6,7,8]) v1 = Visualizer(ccer.converted_coord_dict) v1.create_image_for_1_frame(0) v1.create_image_for_1_frame(1) v1.create_image_for_1_frame(2) v1.create_image_for_1_frame(3) v1.create_image_for_1_frame(4) v1.create_image_for_1_frame(5) v1.create_image_for_1_frame(6) v1.create_image_for_1_frame(7) v1.create_image_for_1_frame(8) ''' p1 = DataParser("./data/0002.txt",'lidar') p1.parse() #p2 = DataParser("./data/0.txt",'mono-camera') #p2.parse() ccer = CoordCoverter(p1.result_dict, "./data_tracking_oxts/0002.txt") ccer.setCoordOrigin(0) ccer.convertCoord([ i for i in range(60)]) print(ccer.converted_coord_dict.keys()) v1 = Visualizer(ccer.converted_coord_dict) predictor = Predictor(ccer.converted_coord_dict, current_frame_id = 10, predictor_mode = "AMM") predictor.predict(period_of_predict = 0.0) v1.create_image_for_1_frame_predict(10, predictor.predict_dict, [846]) predictor.predict(period_of_predict = 0.5) v1.create_image_for_1_frame_predict(15, predictor.predict_dict, [846])
from data_parser import DataParser from verification_plotter import OverlappingPlot """ demo for data parser and data loader pipeline """ if __name__ == '__main__': data_path = 'C:\\CodingChallengePhase1\\final_data' visual_result_path = 'visual_results' """ demo for data parser pipeline """ data_parser = DataParser(data_path) # set verify to draw verification image which is # the overlap of dicom image, contour and mask data_parser.verify = 1 data_parser.parse() """ demo for data loader pipeline """ batch_size = 8 epochs = 2 batch_iterator = BatchIterator('data.h5', batch_size, epochs) while(1): batch = batch_iterator.next() if (batch is None): break # save the verification images for b in range(batch_size): overlap_file = 'loader_' + batch['name'][b] + '.png' overlap_file = os.path.join(visual_result_path, overlap_file) overlap_plt = OverlappingPlot(overlap_file, batch['img'][b], batch['mask'][b])
RSME_mean += RSME_tmp RSME_mean = RSME_mean/len(frame_id_list) print("===============") print(RSME_mean) plot_RSME((x_camera, y_camera), (x_lidar, y_lidar)) #predictor.predict(period_of_predict = 0.5) ''' p_gt = DataParser("./data/0008.txt",'lidar') p_gt.parse() gt_ccer = CoordCoverter(p_gt.result_dict, "./data_tracking_oxts/0008.txt") gt_ccer.setCoordOrigin(0) gt_ccer.convertCoord([ i for i in range(100)]) p1 = DataParser("./data/8.txt",'mono-camera') p1.parse() ccer = CoordCoverter(p1.result_dict, "./data_tracking_oxts/0008.txt") ccer.setCoordOrigin(0) ccer.convertCoord([ i for i in range(100)]) print('+++++++++') print(p1.result_dict[10][296]) print('+++++++++') print(p_gt.result_dict[10][3702])