def predict_proba(self, X, regression=False): X = self.tfidf.transform(X) if regression: raise ValueError('Cannot predict probabilites of a regression!') else: return self.rfc.predict_proba(X) if __name__ == '__main__': traits = ['OPN', 'CON', 'EXT', 'AGR', 'NEU'] model = Model() for trait in traits: dp = DataPrep() X_regression, y_regression = dp.prep_data('status', trait, regression=True, model_comparison=False) X_categorical, y_categorical = dp.prep_data('status', trait, regression=False, model_comparison=False) print('Fitting trait ' + trait + ' regression model...') model.fit(X_regression, y_regression, regression=True) print('Done!') print('Fitting trait ' + trait + ' categorical model...') model.fit(X_categorical, y_categorical, regression=False) print('Done!') with open('static/' + trait + '_model.pkl', 'wb') as f: # Write the model to a file. pickle.dump(model, f)
if regression: return self.rfr.predict(X) else: return self.rfc.predict(X) def predict_prob(self, X, regression=False): X = self.tfidf.transform(X) if regression: raise ValueError('Cannot predict probabilites of a regression!') else: return self.rfc.predict_proba(X) if __name__ == '__main__': traits = ['OPN', 'CON', 'EXT', 'AGR', 'NEU'] model = Model() for trait in traits: dp = DataPrep() X_regression, y_regression = dp.prep_data(trait, regression=True) X_categorical, y_categorical = dp.prep_data(trait, regression=False) print('Entrenando rasgo ' + trait + ' con modelo regression...') model.fit(X_regression, y_regression, regression=True) print('Hecho!') print('Entrenando rasgo ' + trait + ' con modelo categorical...') model.fit(X_categorical, y_categorical, regression=False) print('Hecho!') with open('static/' + trait + '_model.pkl', 'wb') as f: # Write the model to a file. pickle.dump(model, f) print("Entrenamiento terminado!")