Exemple #1
0
def reshape_dataset(dataset):
    print dataset.shape

    #You need fill as your program
    x, y = dataset.shape

    feature_data = dataset[:, :-1]

    temp_data = np.zeros((x, y - 1, y - 1))
    input_data = np.zeros((x, y + 2, y + 2))

    for i in xrange(x):
        for j in xrange(y - 1):
            right = feature_data[i, :j]
            left = feature_data[i, j:]
            temp_data[i, j] = np.concatenate((left, right))

    input_data[:, 1:-2, 1:-2] = temp_data[:, :, :]
    input_data = input_data.reshape((x, y + 2, y + 2, 1))

    output_data = dataset[:, -1].astype(int)
    output_data = dpm.num_to_one_hot(output_data, 9)

    print input_data.shape

    return input_data, output_data
Exemple #2
0
def reshape_dataset(dataset, SPAN):
    input_data = np.zeros((dataset.shape[0], 32, 104, 2))
    temp_data = np.reshape(dataset[:, :6200], (-1, 31, 100, 2))
    input_data[:, :31, 2:102,
               0] = temp_data[:, :, :, 0]  # cause input size is 32 not 31
    input_data[:, :31, 2:102, 1] = temp_data[:, :, :, 1]
    para_data = dataset[:, 6200:6241]

    output_data = dataset[:, 6240 + SPAN[0]].astype(int)
    output_data = dpm.num_to_one_hot(output_data, 3)

    return input_data, para_data, output_data
Exemple #3
0
def reshape_dataset(dataset, SPAN):

    #You need fill as your program

    input_data = np.zeros((dataset.shape[0], 304, 48, 2))
    real_C = np.reshape(dataset[:, :12000], (dataset.shape[0], 300, 40))
    imag_C = np.reshape(dataset[:, 12000:24000], (dataset.shape[0], 300, 40))
    input_data[:, 2:302, 4:44, 0] = real_C[:, :, :]
    input_data[:, 2:302, 4:44, 1] = imag_C[:, :, :]
    para_data = dataset[:, 24000:24041]

    #cause span begin with 1 not 0
    output_data = dataset[:, 24061 + SPAN[0] - 1].astype(int)
    output_data = dpm.num_to_one_hot(output_data, 6)

    return input_data, para_data, output_data
def reshape_dataset(dataset):

    #You need fill as your program]
    #x is batch size y is 94

    feature_data = dataset[:,:-1]

    temp_data = triple_size_data(feature_data)
    x, y, _, _ = temp_data.shape

    input_data = np.zeros((x, y+3, y+3, y))

    input_data[:,1:-2,1:-2,:] = temp_data[:,:,:]

    output_data = dataset[:, -1].astype(int)
    output_data = dpm.num_to_one_hot(output_data, 9)

    return input_data, output_data
def reshape_dataset(dataset):

    #You need fill as your program]

    #feature data (x,35)
    feature_data = dataset[:, :-1]

    #temp data (x,35,35,35)
    temp_data = triple_size_data(feature_data)
    #x,y (batch,35)
    x, y, _, _ = temp_data.shape

    #input data (batch, 40,40,35)
    input_data = np.zeros((x, y + 5, y + 5, y))

    input_data[:, 2:-3, 2:-3, :] = temp_data[:, :, :]

    output_data = dataset[:, -1].astype(int)
    output_data = dpm.num_to_one_hot(output_data, 2)

    return input_data, output_data