Exemple #1
0
def hyperopt_GD(P,param_space,eval_step=5,max_evals=None,P_val=None):
    P.set('save_step',INF)
      
    F = ds.get_data(P)
    P.log("Data loaded.")
    
    DL_L, _, DL_V = pp.get_all_dataloader(P,F,P_val)
    P.log(f"Number of batches: Labelled = {len(DL_L)} | Validation = {len(DL_V)}")
    
    if P.get('CUDA') and torch.cuda.is_available(): floatTensor = torch.cuda.FloatTensor
    else: floatTensor = torch.FloatTensor
     
    def obj(args):
        P0 = P.copy()
        P0.update(args)

        perf_mat = np.empty(shape=(2,P.get('runs')))
        for run in range(P0.get('runs')):
            G, D, _, _ = GAN.train_GD(P0, DL_L, DL_V, name=P0.get('name')+'_%d'%run)
            G.eval();D.eval();
            
            with torch.no_grad():
                YV = floatTensor(pp.get_one_hot_labels(P0,num=P0.get('batch_size'))) 
                perf_mat[0,run] = calc_accuracy(D(torch.cat((G(torch.cat((floatTensor(np.random.normal(0,1,(P0.get('batch_size'),P0.get('noise_shape')))),YV),dim=1)),YV),dim=1)),floatTensor(P0.get('batch_size'),1).fill_(0.0))
                perf_mat[1,run] = np.mean([calc_accuracy(D(torch.cat((XV,YV),dim=1)),floatTensor(XV.shape[0],1).fill_(1.0)) for XV, YV in DL_V])
                
        val = np.mean((0.5-perf_mat[0])**2) + 0.1 * np.mean((1-perf_mat[1])**2)
        P0.log(f"loss = {val:.5f} Accuracy D = {np.mean(perf_mat):.5f} | vs G = {np.mean(perf_mat[0]):.5f} | vs real = {np.mean(perf_mat[1]):.5f}",name='hyperopt')
        return val
 
    hyperopt_Search(P,param_space,obj,eval_step=eval_step,max_evals=max_evals)
Exemple #2
0
def hyperopt_R(P,param_space,eval_step=5,max_evals=None,P_val=None): 
    P.set('save_step',INF)

    F = ds.get_data(P)
    P.log("Data loaded.")
    
    DL_L, _, DL_V = pp.get_all_dataloader(P,F,P_val)
    P.log(f"Number of batches: Labelled = {len(DL_L)} | Validation = {len(DL_V)}")
    
    def obj(args):
        P0 = P.copy()
        P0.update(args)
        P0.log("Check Params: "+", ".join([str(key)+' = '+ ("'"+val+"'" if isinstance(val,str) else str(val)) for key,val in args.items()]),name='hyperopt')
        
        perf_mat = np.empty(shape=(2,P.get('runs'),len(DL_V)))
        for run in range(P0.get('runs')):

            C, _, _ = GAN.train_Base(P0, DL_L, DL_V, name=P0.get('name')+'_%d'%run)
            C.eval()
            with torch.no_grad():
                for i,(XV, YV) in enumerate(DL_V):
                    perf_mat[0,run,i] = calc_f1score(C(XV), YV, average = 'weighted')
                    perf_mat[1,run,i] = calc_accuracy(C(XV), YV)
              
        perf = np.mean(perf_mat.reshape(2,-1),axis=1)
        P0.log(f"F1: {perf[0]:.5f} | Accuracy: {perf[1]:.5f}",name='hyperopt')
        return -perf[0]
    
    hyperopt_Search(P,param_space,obj,eval_step=eval_step,max_evals=max_evals)  
Exemple #3
0
def accept_request():
    data = request.get_data()
    data_json = json.loads(data)
    session_id = data_json['session_id']
    username = data_json['username']
    brp_data = data_source.get_data(username)

    attribute_request = session_manager.get_session(session_id)['request']
    validator_response = validator.check(attribute_request, brp_data)

    random_color = "rgb({0},{1},{2})".format(random.randint(0, 255),
                                             random.randint(0, 255),
                                             random.randint(0, 255))

    data = {
        'request_valid': validator_response,
        'request_status': 'ACCEPTED',
        'secret': random_color
    }
    active_session = session_manager.append_session_data(session_id, data)

    # can not be ended here, since requestor needs to access data still
    # session_manager.end_session(session_id)

    return json_response({'response': active_session})
Exemple #4
0
 def do_GET(self):
     parsed_path = urlparse(self.path)
     self.send_response(200)
     self.send_header('Content-Type', 'application/json')
     self.end_headers()
     data = get_data(True)
     self.wfile.write(json.dumps(data).encode())
     return
Exemple #5
0
def plt_FX_num(P,max_n=908,P_val=None,indeces=None):
    
    if indeces is not None:max_n = min(max_n,len(indeces))
    
    P.set('FX_indeces',None)
    V = ds.get_data(P)
    
    for i,(X,Y) in enumerate(V):
        count_string = ', '.join([ f"{int(val)}: {count}" for val,count in zip(*np.unique(Y,return_counts=True))])
        P.log(f"V[{i+1}]: {X.shape} - {Y.shape} ({count_string})")
    
    def train_model(X,y,seed):
        mlp = MLP(hidden_layer_sizes=(150,150),max_iter=2000, random_state=seed)
        return mlp.fit(X, y)
    
    mat = np.empty(shape=(3,max_n))
    FX = np.arange(1,max_n+1,1)
    for fx in FX:
        if indeces is None:P.set('FX_num',fx)
        else: P.set('FX_indeces',indeces[:fx])

        V0 = ds.select_features(V,P.get('FX_indeces'))
        F0 = pp.perform_preprocessing(P, V0, P_val)
        
        x_train, y_train = F0[0]
        x_test, y_test = F0[2]

        model_list = Parallel(n_jobs=8)(delayed(train_model)(x_train, y_train.ravel(), seed) for seed in range(P.get('runs')))

        res = np.empty(shape=(3,P.get('runs')))
        for run,mlp in enumerate(model_list):
            res[0,run] = accuracy_score(y_test.ravel(),mlp.predict(x_test))
            res[1,run] = f1_score(y_test.ravel(),mlp.predict(x_test),average='weighted')
            res[2,run] = mlp.n_iter_
    
        mat[:,fx-1] = np.mean(res,axis=1)
        P.log(f"Fx_num = {fx}: [Acc = {mat[0,fx-1]:.2f}] [F1 = {mat[1,fx-1]:.2f}] [{mat[2,fx-1]:.2f} iterations]")
        
    plt.figure(figsize=(27,9),dpi=300,clear=True)
    fig, ax = plt.subplots()
    
    ax.plot(FX,mat[0],linestyle='solid',label='Accuracy')
    ax.plot(FX,mat[1],linestyle='solid',label='F1 Score')
    
    ax.legend()
    ax.set_xlabel('FX_num')
    ax.set_ylabel('Performance')
    
    ax.set_xlim(1,max_n)
    ax.grid()
    save_fig(P,'eval_fx_num',fig)
    
    ax.plot(FX,mat[2]/np.max(mat[2]),linestyle='solid',label='Iterations')
    ax.legend()
    save_fig(P,'eval_fx_num_iterations',fig)
Exemple #6
0
def hyperopt_GAN(P,param_space,eval_step=5,max_evals=None,P_val=None):
    P.set('save_step',INF)
    P.set('R_active',False)
    
    F = ds.get_data(P)
    P.log("Data loaded.")
    
    DL_L, DL_U_iter, DL_V = pp.get_all_dataloader(P,F,P_val)
    P.log(f"Number of batches: Labelled = {len(DL_L)} | Unlabelled = {len(DL_U_iter)} | Validation = {len(DL_V)}")
    
    if P.get('CUDA') and torch.cuda.is_available(): floatTensor = torch.cuda.FloatTensor
    else: floatTensor = torch.FloatTensor

    def obj(args):
        P0 = P.copy()
        P0.update(args)
        P0.log("Check Params: "+", ".join([str(key)+' = '+ ("'"+val+"'" if isinstance(val,str) else str(val)) for key,val in args.items()]),name='hyperopt') 
            
        perf_mat_C = np.empty(shape=(2,P.get('runs'),len(DL_V)))
        perf_mat_D = np.empty(shape=(3,P.get('runs')))
        for run in range(P0.get('runs')):
            G, D, C, _, _ = GAN.train_GAN(P0, DL_L, DL_U_iter, DL_V, name=P0.get('name')+'_%d'%run)
            G.eval();D.eval();C.eval();
            
            with torch.no_grad():
                acc_D = np.empty(shape=(2,len(DL_V)))
                for i,(XV, YV) in enumerate(DL_V):
                    YC = C(XV)
                    perf_mat_C[0,run,i] = calc_f1score(YC, YV, average = 'weighted')
                    perf_mat_C[1,run,i] = calc_accuracy(YC, YV)
                    acc_D[0,i] = calc_accuracy(D(torch.cat((XV,YV),dim=1)),floatTensor(XV.shape[0],1).fill_(1.0))
                    acc_D[1,i] = calc_accuracy(D(torch.cat((XV,YC),dim=1)),floatTensor(XV.shape[0],1).fill_(0.0))
                    
                YV = floatTensor(pp.get_one_hot_labels(P0,num=P0.get('batch_size'))) 
                perf_mat_D[0,run] = calc_accuracy(D(torch.cat((G(torch.cat((floatTensor(np.random.normal(0,1,(P0.get('batch_size'),P0.get('noise_shape')))),YV),dim=1)),YV),dim=1)),floatTensor(P0.get('batch_size'),1).fill_(0.0))
                perf_mat_D[1,run] = np.mean(acc_D[0])
                perf_mat_D[2,run] = np.mean(acc_D[1])
              
        perf = np.mean(perf_mat_C.reshape(2,-1),axis=1)
        val = (
            0.15 * np.mean((0.5-perf_mat_D[0])**2)   # G/D acc ideally is around 50%
            + 0.05 * np.mean((1-perf_mat_D[1])**2)   # D is rewarded for accurately classifying real pairs
            + 0.05 * np.mean((1-perf_mat_D[2])**2)   # D is rewarded for accurately classifying classifier predictions
            - perf[0]                               # C F1 score is most important
            )
        P0.log(f"loss = {val:.5f} [Accuracy D = {np.mean(perf_mat_D):.5f} | vs G = {np.mean(perf_mat_D[0]):.5f} | vs C = {np.mean(perf_mat_D[2]):.5f} | vs real = {np.mean(perf_mat_D[1]):.5f}] [C - F1: {perf[0]:.5f} | Accuracy: {perf[1]:.5f}]",name='hyperopt')
        return val
 
    hyperopt_Search(P,param_space,obj,eval_step=eval_step,max_evals=max_evals)
Exemple #7
0
def sklearn_baseline(P,V=None):
    P.log(P)
        
    F = pp.perform_preprocessing(P, ds.get_data(P,V), P.copy().set_keys( sample_no = None, undersampling = False, oversampling = False, ))
    
    x_train, y_train = F[0]
    x_test, y_test = F[2]
    y_train, y_test = y_train.ravel(), y_test.ravel()
    
    # P.log('cross_val: '+str(P.get('cross_val')))
    # P.log('   FX_num: '+str(P.get('FX_num')))
    
    
    # ''' Multi-layer Perceptron '''
    # res = np.empty(shape=(P.get('runs'),5))
    # for run in range(P.get('runs')):
    #     clf = MLP(hidden_layer_sizes=(100,100),max_iter=500)
    #     clf.fit(x_train, y_train)

    #     y_pred = clf.predict(x_train) 
    #     res[run,0] = accuracy_score(y_train,y_pred)
    #     res[run,1] = f1_score(y_train,y_pred,average='macro')
        
    #     y_pred = clf.predict(x_test)
    #     res[run,2] = accuracy_score(y_test,y_pred)
    #     res[run,3] = f1_score(y_test,y_pred,average='macro')
    #     res[run,4] = clf.n_iter_
        
    # res = np.mean(res,axis=0)
        
    # P.log(f"MLP Acc Train: {res[0]:.2f}")
    # P.log(f"MLP  F1 Train: {res[1]:.2f}")

    # P.log(f"MLP Acc  Test: {res[2]:.2f}")
    # P.log(f"MLP  F1  Test: {res[3]:.2f}")
    # P.log(F"MLP Iterations = {res[4]}")
    
    
    ''' Random Forest Classifier '''
    res = np.empty(shape=(P.get('runs'),4))
    for run in range(P.get('runs')):
        clf = RandomForestClassifier()
        clf.fit(x_train, y_train)

        y_pred = clf.predict(x_train) 
        res[run,0] = accuracy_score(y_train,y_pred)
        res[run,1] = f1_score(y_train,y_pred,average='macro')
        
        y_pred = clf.predict(x_test)
        res[run,2] = accuracy_score(y_test,y_pred)
        res[run,3] = f1_score(y_test,y_pred,average='macro')
        
    res = np.mean(res,axis=0)
       
    P.log("")
    P.log(f"RFC Acc Train: {res[0]:.5f}")
    P.log(f"RFC  F1 Train: {res[1]:.5f}")
    
    P.log("")
    P.log(f"RFC Acc  Test: {res[2]:.5f}")
    P.log(f"RFC  F1  Test: {res[3]:.5f}")

    
    ''' Gaussian Naive Bayes '''
    res = np.empty(shape=(P.get('runs'),4))
    for run in range(P.get('runs')):
        clf = GaussianNB()
        clf.fit(x_train, y_train)

        y_pred = clf.predict(x_train) 
        res[run,0] = accuracy_score(y_train,y_pred)
        res[run,1] = f1_score(y_train,y_pred,average='macro')
        
        y_pred = clf.predict(x_test)
        res[run,2] = accuracy_score(y_test,y_pred)
        res[run,3] = f1_score(y_test,y_pred,average='macro')
        
    res = np.mean(res,axis=0)
    
    P.log("")
    P.log(f"GNB Acc Train: {res[0]:.5f}")
    P.log(f"GNB  F1 Train: {res[1]:.5f}")
    
    P.log("")
    P.log(f"GNB Acc  Test: {res[2]:.5f}")
    P.log(f"GNB  F1  Test: {res[3]:.5f}")
Exemple #8
0
def run_cross_val(P, V=None, Base=True):
    P.log("Params: " + str(P))

    ACC = load_results(P, name='acc')
    F1S = load_results(P, name='f1')
    YF = load_results(P, name='YF')
    RF = load_results(P, name='RF')
    PF = load_results(P, name='PF')

    if any(mat is None for mat in (ACC, F1S, YF, PF)):

        if P.get('CUDA') and torch.cuda.is_available():
            P.log("CUDA Training.")
        else:
            P.log("CPU Training.")

        F = pp.perform_preprocessing(
            P, ds.get_data(P, V),
            P.copy().set_keys(
                sample_no=None,
                undersampling=False,
                oversampling=False,
            ))

        X, Y = F[0]
        XV, YV = F[2]
        x_test, y_test = XV, YV.ravel()
        DL_V = pp.get_dataloader(P, XV, YV, batch_size=1024)

        #DL_L, DL_U_iter, DL_V = pp.get_all_dataloader(P, ds.get_data(P,V), P_val)
        #P.log(f"Number of batches: Labelled = {len(DL_L)} | Unlabelled = {len(DL_U_iter)} | Validation = {len(DL_V)}")

        ACC = None
        F1S = None
        YF = None
        RF = None
        PF = None

        # Baseline Results
        res = np.empty(shape=(P.get('runs'), 8))

        # -------------------
        #  Individual runs
        # -------------------
        skf = StratifiedKFold(n_splits=P.get('runs'),
                              shuffle=True,
                              random_state=42)
        for run, (train_index, test_index) in enumerate(skf.split(X, Y)):

            DL_L = pp.get_dataloader(P, X[test_index], Y[test_index])
            DL_U_iter = pp.get_perm_dataloader(P, X[train_index],
                                               Y[train_index])
            P.log(
                f"Number of batches: Labelled = {len(DL_L)} | Unlabelled = {len(DL_U_iter)} | Validation = {len(DL_V)}"
            )

            G, D, C, mat_accuracy, mat_f1_score = GAN.train_GAN(
                P, DL_L, DL_U_iter, DL_V, name=P.get('name') + '_%d' % run)

            if P.get('R_active'):
                R, acc_BASE, f1_BASE = GAN.train_Base(P,
                                                      DL_L,
                                                      DL_V,
                                                      name=P.get('name') +
                                                      '_%d' % run)
                mat_accuracy = np.concatenate((mat_accuracy, acc_BASE))
                mat_f1_score = np.concatenate((mat_f1_score, f1_BASE))
            if ACC is None:
                ACC = np.expand_dims(mat_accuracy, axis=2)
                F1S = np.expand_dims(mat_f1_score, axis=2)
            else:
                ACC = np.concatenate(
                    (ACC, np.expand_dims(mat_accuracy, axis=2)), axis=2)
                F1S = np.concatenate(
                    (F1S, np.expand_dims(mat_accuracy, axis=2)), axis=2)

            C.eval()
            if P.get('R_active'):
                R.eval()

            with torch.no_grad():
                for XV, YV in DL_V:

                    # Classify Validation data
                    PC = C(XV)

                    if YF == None:
                        YF = YV
                        PF = PC
                    else:
                        YF = torch.cat((YF, YV), 0)
                        PF = torch.cat((PF, PC), 0)

                    if P.get('R_active'):
                        if RF == None:
                            RF = R(XV)
                        else:
                            RF = torch.cat((RF, R(XV).detach()), 0)

            if Base:
                # Baseline
                x_train, y_train = X[test_index], Y[test_index].ravel()
                ''' Random Forest Classifier '''
                clf = RandomForestClassifier()
                clf.fit(x_train, y_train)

                y_pred = clf.predict(x_train)
                res[run, 0] = accuracy_score(y_train, y_pred)
                res[run, 1] = f1_score(y_train, y_pred, average='macro')

                y_pred = clf.predict(x_test)
                res[run, 2] = accuracy_score(y_test, y_pred)
                res[run, 3] = f1_score(y_test, y_pred, average='macro')
                ''' Gaussian Naive Bayes '''
                clf = GaussianNB()
                clf.fit(x_train, y_train)

                y_pred = clf.predict(x_train)
                res[run, 4] = accuracy_score(y_train, y_pred)
                res[run, 5] = f1_score(y_train, y_pred, average='macro')

                y_pred = clf.predict(x_test)
                res[run, 6] = accuracy_score(y_test, y_pred)
                res[run, 7] = f1_score(y_test, y_pred, average='macro')

        save_results(P, ACC, name='acc')
        save_results(P, F1S, name='f1')
        save_results(P, YF, name='YF')
        save_results(P, PF, name='PF')
        if RF is not None:
            save_results(P, RF, name='RF')
        P.log("Saved Accuracy, F1 Score and predictions.")

        if Base:
            # Baseline Evaluation
            res = np.mean(res, axis=0)

            P.log("")
            P.log(f"RFC Acc Train: {res[0]:.5f}")
            P.log(f"RFC  F1 Train: {res[1]:.5f}")

            P.log("")
            P.log(f"RFC Acc  Test: {res[2]:.5f}")
            P.log(f"RFC  F1  Test: {res[3]:.5f}")

            P.log("")
            P.log(f"GNB Acc Train: {res[4]:.5f}")
            P.log(f"GNB  F1 Train: {res[5]:.5f}")

            P.log("")
            P.log(f"GNB Acc  Test: {res[6]:.5f}")
            P.log(f"GNB  F1  Test: {res[7]:.5f}")
            P.log("")

    else:
        P.log("Loaded Accuracy, F1 Score and predictions.")

    plot_evaluation(P,
                    ACC,
                    F1S,
                    YF,
                    PF,
                    RF,
                    epoch_lst=list(range(50, P.get('epochs'), 50)))
Exemple #9
0
from bokeh.io import curdoc
from bokeh.layouts import column
from bokeh.models import ColumnDataSource
from bokeh.plotting import figure

# initialize
from data_source import get_data
data = get_data()
source = ColumnDataSource(data=dict(date=[], t1=[], t2=[]))
source.data = source.from_df(data[['x', 'y']])

# set up plots
corr = figure(plot_width=350, plot_height=350, tools='box_select,reset')
corr.circle('x',
            'y',
            size=2,
            source=source,
            selection_color="orange",
            alpha=0.6,
            nonselection_alpha=0.1,
            selection_alpha=0.4)


def selection_change(attrname, old, new):
    selected = source.selected.indices
    if selected:

        xs = source.data['x'][selected]
        ys = source.data['y'][selected]

        xy = [(x, y) for x, y in zip(xs, ys)]
Exemple #10
0
#!/usr/bin/env python3
from data_source import get_data

print(get_data(False))
Exemple #11
0
def pytorch_baseline(P,P_val=None,num=None):
    P.set('epochs_GD',0)
    P.log("Params: "+str(P))
    
    if P.get('CUDA') and torch.cuda.is_available():
        P.log("CUDA Training.")
    else:
        P.log("CPU Training.")
    
    DL_L, _, DL_V = pp.get_all_dataloader(P, ds.get_data(P), P_val)
    P.log(f"Number of batches: Labelled = {len(DL_L)} | Validation = {len(DL_V)}")

        
    ACC = None
    F1S = None
    RF = None
    YF = None
    
    # -------------------
    #  Individual runs
    # -------------------
    
    for run in range(P.get('runs')):
    
        R, mat_accuracy, mat_f1_score = GAN.train_Base(P, DL_L, DL_V, name=P.get('name')+'_%d'%run)

        if ACC is None:
            ACC = mat_accuracy
            F1S = mat_f1_score
        else:
            ACC = np.concatenate((ACC, mat_accuracy),axis=0)
            F1S = np.concatenate((F1S, mat_f1_score),axis=0)

        R.eval()
        with torch.no_grad():
            for XV, YV in DL_V:
                
                if RF == None:
                    RF = R(XV)
                    YF = YV
                else:
                    RF = torch.cat((RF, R(XV).detach()), 0)
                    YF = torch.cat((YF, YV), 0)

    # -------------------
    #  Plot Metrics
    # -------------------
    
    timeline = np.arange(0,(P.get('epochs_GD')+P.get('epochs'))+1,P.get('save_step'))
    
    def get_label(name,model):
        if name == "Accuracy": return "Accuracy $A_%s$"%model;
        elif name == "F1 Score": return "F1 Score $F_%s$"%model;
        else: return "NO_NAME_"+model
       
        
    plt.figure(figsize=(27,9),dpi=300,clear=True)
    fig, ax = plt.subplots()  
    
    cmap = plt.get_cmap('gnuplot')
    indices = np.linspace(0, cmap.N, 7)
    colors = [cmap(int(i)) for i in indices]
        
    for k,(name,mat) in enumerate((('Accuracy',ACC),("F1 Score",F1S))):

        mean_C = np.mean(mat,axis=0)
        std_C = np.std(mat,axis=0)

        P.log(f"R {name} Test: {mean_C[-1]:.2f}")

        ax.plot(timeline,mean_C,c=colors[k],linestyle='solid',label=get_label(name,'R'))
        ax.fill_between(timeline, mean_C-std_C, mean_C+std_C, alpha=0.3, facecolor=colors[k])
            
    Y_max = 1.15
    ax.set_xlim(0.0,(P.get('epochs_GD')+P.get('epochs')))
    ax.set_ylim(0.0,Y_max)

    ax.legend()
    ax.set_xlabel('Epoch')
    ax.set_ylabel('Performance')
      
    if num is None: name = 'eval_baseline'
    else: name = 'eval_baseline_'+str(num)
    
    ax.grid()
    save_fig(P,name,fig)
  
    YF = pp.one_hot_to_labels(P,YF)
    RF = pp.one_hot_to_labels(P,RF)

    con_mat = confusion_matrix(YF, RF, labels=None, sample_weight=None, normalize=None)
    plot_confusion_matrix(np.divide(con_mat,P.get('runs')).round().astype(int),P,name=name,title='Confusion matrix',fmt='d')
    
    con_mat = confusion_matrix(YF, RF, labels=None, sample_weight=None, normalize='all')
    plot_confusion_matrix(con_mat,P,name=name+'_normalised',title='Confusion matrix',fmt='0.3f')
Exemple #12
0
def get_Results(P,P_val=None,V=None):
    P.log("Params: "+str(P))
    
    ACC = load_results(P,name='acc')
    F1S = load_results(P,name='f1')
    YF = load_results(P,name='YF')
    RF = load_results(P,name='RF')
    PF = load_results(P,name='PF')
    
    if any(mat is None for mat in (ACC,F1S,YF,PF)):
    
        if P.get('CUDA') and torch.cuda.is_available():
            P.log("CUDA Training.")
        else:
            P.log("CPU Training.")
        
        DL_L, DL_U_iter, DL_V = pp.get_all_dataloader(P, ds.get_data(P,V), P_val)
        P.log(f"Number of batches: Labelled = {len(DL_L)} | Unlabelled = {len(DL_U_iter)} | Validation = {len(DL_V)}")    
    
        ACC = None
        F1S = None
        YF = None
        RF = None
        PF = None
        
        # -------------------
        #  Individual runs
        # -------------------
        
        for run in range(P.get('runs')):
        
            G, D, C, mat_accuracy, mat_f1_score = GAN.train_GAN(P, DL_L, DL_U_iter, DL_V, name=P.get('name')+'_%d'%run)
            
            if P.get('R_active'):
                R, acc_BASE, f1_BASE = GAN.train_Base(P, DL_L, DL_V, name=P.get('name')+'_%d'%run)
                mat_accuracy = np.concatenate((mat_accuracy,acc_BASE))
                mat_f1_score = np.concatenate((mat_f1_score,f1_BASE))
            if ACC is None:
                ACC = np.expand_dims(mat_accuracy,axis=2)
                F1S = np.expand_dims(mat_f1_score,axis=2)
            else:
                ACC = np.concatenate((ACC, np.expand_dims(mat_accuracy,axis=2)),axis=2)
                F1S = np.concatenate((F1S, np.expand_dims(mat_accuracy,axis=2)),axis=2)
                
            C.eval()
            if P.get('R_active'):
                R.eval()
                
            with torch.no_grad():
                for XV, YV in DL_V:
                    
                    # Classify Validation data
                    PC = C(XV)
                    
                    if YF == None:
                        YF = YV
                        PF = PC
                    else:
                        YF = torch.cat((YF, YV), 0)
                        PF = torch.cat((PF, PC), 0)
                        
                    if P.get('R_active'):
                        if RF == None:
                            RF = R(XV)
                        else:
                            RF = torch.cat((RF, R(XV).detach()), 0)
        
        save_results(P, ACC, name='acc')
        save_results(P, F1S, name='f1')
        save_results(P,YF,name='YF')
        save_results(P,PF,name='PF')
        if RF is not None:
            save_results(P, RF, name='RF')
        P.log("Saved Accuracy, F1 Score and predictions.")
    else:
        P.log("Loaded Accuracy, F1 Score and predictions.")
        
    return ACC, F1S, (YF, RF, PF)