def __getitem__(self, index): """ Return item at index in 0 to len(self) In this case a set of crops from an lf sample Return type is a dictionary of depth and colour arrays """ with h5py.File(self.file_path, mode='r', libver='latest', swmr=True) as h5_file: idx = index // self.num_crops colour = torch.tensor(h5_file[self.colour][idx], dtype=torch.float32) warped = torch.tensor(h5_file[self.warped][idx], dtype=torch.float32) grid_size = self.grid_size sample = { 'colour': colour, 'warped': warped, 'grid_size': grid_size } if self.crop_train: sample = data_transform.get_random_crop( sample, self.patch_size) sample = data_transform.normalise_sample(sample) sample = data_transform.random_gamma(sample) if self.sub_chan: sample = data_transform.subsample_channels(sample, 3) if self.transform: sample = self.transform(sample) return sample
def __getitem__(self, index): """ Return item at index in 0 to len(self) In this case a set of crops from an lf sample Return type is a dictionary of depth and colour arrays """ with h5py.File(self.file_path, mode='r', libver='latest', swmr=True) as h5_file: idx = index // self.num_crops depth = torch.squeeze( torch.tensor(h5_file[self.depth][idx], dtype=torch.float32)) colour = torch.tensor(h5_file[self.colour][idx], dtype=torch.float32) grid_size = self.grid_size sample = {'depth': depth, 'colour': colour, 'grid_size': grid_size} sample = data_transform.get_random_crop(sample, self.patch_size) sample = data_transform.random_gamma(sample) if self.transform: sample = self.transform(sample) sample = data_transform.stack(sample, channels=65) return sample