Exemple #1
0
def data_prep_function_train(x,
                             p_transform=p_transform,
                             p_augmentation=p_augmentation,
                             **kwargs):
    x = x.convert('RGB')
    x = np.array(x)
    x = imresize(x, (128, 128, 3), interp='lanczos')
    x = np.swapaxes(x, 0, 2)
    x = x / 255.
    x -= mean
    x /= std
    x = x.astype(np.float32)
    pert_aug = dict((k, p_augmentation[k])
                    for k in ('zoom_range', 'rotation_range', 'shear_range',
                              'translation_range', 'do_flip', 'allow_stretch')
                    if k in p_augmentation)
    x = data_transforms.perturb(x,
                                pert_aug,
                                p_transform['patch_size'],
                                rng,
                                n_channels=p_transform["channels"])
    losless_aug = dict((k, p_augmentation[k]) for k in ('rot90_values', 'flip')
                       if k in p_augmentation)
    x = data_transforms.random_lossless(x, losless_aug, rng)
    return x
Exemple #2
0
def data_prep_function_train(x, p_transform=p_transform, p_augmentation=p_augmentation, **kwargs):
    x = x.convert('RGB')
    x = np.array(x)
    x = np.swapaxes(x,0,2)
    x = x / 255.
    x = x.astype(np.float32)
    x = data_transforms.random_lossless(x, p_augmentation, rng)
    return x
Exemple #3
0
def data_prep_function_train(x,
                             p_transform=p_transform,
                             p_augmentation=p_augmentation,
                             **kwargs):
    x = np.array(x, dtype=np.float32)
    x = data_transforms.channel_zmuv(x,
                                     img_stats=channel_zmuv_stats,
                                     no_channels=4)
    x = data_transforms.random_lossless(x, p_augmentation, rng)
    return x
Exemple #4
0
def data_prep_function_train(x, p_transform=p_transform, p_augmentation=p_augmentation, **kwargs):
    x = x.convert('RGB')
    x = np.array(x)
    x = np.swapaxes(x,0,2)
    x = x / 255.
    x -= mean
    x /= std
    x = x.astype(np.float32)
    x = data_transforms.random_lossless(x, p_augmentation, rng)
    x = np.pad(x,[[0,0],[22,21],[22,21]],"edge")
    return x
Exemple #5
0
def data_prep_function_train(x,
                             p_transform=p_transform,
                             p_augmentation=p_augmentation,
                             **kwargs):
    x = x.convert('RGB')
    x = np.array(x)
    x = np.swapaxes(x, 0, 2)
    x = x / 255.
    x -= mean
    x /= std
    x = x.astype(np.float32)
    x = random_crop(x, p_augmentation['aug_out_size'][0],
                    p_augmentation['aug_out_size'][0], rng)
    x = data_transforms.random_lossless(x, p_augmentation, rng)
    random_crop
    return x