Exemple #1
0
def train(epoch):
    metrics = '   '.join(
        ['\r[{}]', '{:.1f}%', '{}/{}', 'accu={:.3f}', 'loss={:.3f}', '{}/{}'])
    for epoch_index in range(1, epoch + 1):
        print('Epoch {}:'.format(epoch_index))
        time_start = time.time()
        epoch_trained = 0
        right_ratio = []
        bars_max = 20
        batch_loss = []
        batch_generator = data_util.get_batch(asks, answers)
        for encoder, decoder, target, weights in batch_generator:
            feed_dict = {}
            for i in range(len(encoder_inputs)):
                feed_dict[encoder_inputs[i]] = encoder[i]
            for i in range(len(decoder_inputs)):
                feed_dict[decoder_inputs[i]] = decoder[i]
                feed_dict[decoder_targets[i]] = target[i]
                feed_dict[decoder_weights[i]] = weights[i]
            _, output, loss = sess.run(ops, feed_dict)
            right = (target == np.asarray(output).argmax(axis=2))
            right = right * weights
            right = np.sum(right) / np.sum(weights)
            right_ratio.append(right)
            epoch_trained += data_util.batch_size
            batch_loss.append(loss)
            time_now = time.time()
            time_spend = time_now - time_start
            time_estimate = time_spend / (epoch_trained / samples_per_epoch)
            percent = min(100, epoch_trained / samples_per_epoch) * 100
            bars = math.floor(percent / 100 * bars_max)
            sys.stdout.write(
                metrics.format('=' * bars + '-' * (bars_max - bars), percent,
                               epoch_trained, samples_per_epoch,
                               np.mean(right_ratio), np.mean(batch_loss),
                               data_util.time(time_spend),
                               data_util.time(time_estimate)))
            sys.stdout.flush()
            if epoch_trained >= samples_per_epoch:
                break
        print('\n')
Exemple #2
0
def train(noise_size, data_shape, batch_size, n_samples):
    """
    @Author: Nelson Zhao
    --------------------
    @param noise_size: 噪声size
    @param data_shape: 真实图像shape
    @batch_size:
    @n_samples: 显示示例图片数量
    """

    tf_img_batch = data_util.get_batch(image=img_files,
                                       image_W=IMAGE_W,
                                       image_H=IMAGE_H,
                                       batch_size=batch_size,
                                       capacity=INPUT_CAPACITY)

    # 存储loss
    losses = []
    steps = 0

    inputs_real, inputs_noise = get_inputs(noise_size, data_shape[1],
                                           data_shape[2], data_shape[3])
    g_loss, d_loss = get_loss(inputs_real, inputs_noise, data_shape[-1])
    g_train_opt, d_train_opt = get_optimizer(g_loss, d_loss, beta1,
                                             learning_rate)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(sess=sess, coord=coord)

        try:
            # for e in range(epochs):
            for step in np.arange(max_steps):
                step = step
                if coord.should_stop():
                    break

                batch_images = sess.run(tf_img_batch)
                # print(batch_images)
                # scale to -1, 1
                # print(batch_images)
                # batch_images = batch_images * 2 - 1

                # noise
                batch_noise = np.random.uniform(-1,
                                                1,
                                                size=(batch_size, noise_size))

                # run optimizer
                _ = sess.run(g_train_opt,
                             feed_dict={
                                 inputs_real: batch_images,
                                 inputs_noise: batch_noise
                             })
                _ = sess.run(d_train_opt,
                             feed_dict={
                                 inputs_real: batch_images,
                                 inputs_noise: batch_noise
                             })

                if step % 5000 == 0 or (step + 1) == max_steps:
                    # if steps % 101 == 0:
                    train_loss_d = d_loss.eval({
                        inputs_real: batch_images,
                        inputs_noise: batch_noise
                    })
                    train_loss_g = g_loss.eval({
                        inputs_real: batch_images,
                        inputs_noise: batch_noise
                    })
                    losses.append((train_loss_d, train_loss_g))
                    # 显示图片
                    samples = show_generator_output(sess, n_samples,
                                                    inputs_noise,
                                                    data_shape[-1])
                    plot_images(samples)
                    print(
                        "Epoch {}/{}....".format(step + 1, max_steps),
                        "Discriminator Loss: {:.4f}....".format(train_loss_d),
                        "Generator Loss: {:.4f}....".format(train_loss_g))
        except tf.errors.OutOfRangeError:
            print('Done training -- epoch limit reached')
        finally:
            coord.request_stop()
        coord.join(threads)
Exemple #3
0
        # pred = tf.boolean_mask(pred_, mask)
        # accuracy = tf.reduce_mean(tf.cast(tf.equal(pred, true), tf.float32))

with tf.Session(graph=graph) as sess:
    if params.isTrain:
        saver = tf.train.Saver(tf.global_variables())
        try:
            ckpt_path = tf.train.latest_checkpoint('./checkpoint/')
            saver.restore(sess, ckpt_path)
        except ValueError:
            init = tf.global_variables_initializer()
            sess.run(init)
        for epoch in range(params.epoch_num):
            for res_seq, res_labels, sentence_legth in data_util.get_batch(
                    train_set,
                    params.batch_size,
                    word2id,
                    tag2id,
                    shuffle=params.shuffle):
                _, l, acc, global_nums, logits_, labels_ = sess.run(
                    [train_op, loss, accuracy, global_add, pred_, true_], {
                        word_ids: res_seq,
                        labels: res_labels,
                        sequence_lengths: sentence_legth,
                        dropout_pl: params.dropout
                    })
                if global_nums % 20 == 0:
                    saver.save(sess,
                               './checkpoint/model.ckpt',
                               global_step=global_nums)
                    print(
                        'epoch {}, global_step {}, loss: {:.4}, accuracy: {:.4} '
Exemple #4
0
def decode():
    # Load vocabularies.
    doc_dict = data_util.load_dict(FLAGS.data_dir + "/doc_dict.txt")
    sum_dict = data_util.load_dict(FLAGS.data_dir + "/sum_dict.txt")
    if doc_dict is None or sum_dict is None:
        logging.warning("Dict not found.")
    docs, data = data_util.load_test_data(FLAGS.test_file, doc_dict)

    with tf.Session() as sess:
        # Create model and load parameters.
        logging.info("Creating %d layers of %d units." %
                     (FLAGS.num_layers, FLAGS.size))
        model = create_model(sess, True)
        class_model = create_class_model(sess, True)

        result = []
        for idx, token_ids in enumerate(data):

            # Get a 1-element batch to feed the sentence to the model.
            encoder_inputs, decoder_inputs, encoder_len, decoder_len, class_output, class_len =\
                data_util.get_batch(
                    {0: [(token_ids, [data_util.ID_GO, data_util.ID_EOS],[0,0])]}, _buckets, 0, FLAGS.batch_size, False, 0)

            if FLAGS.batch_size == 1 and FLAGS.geneos:
                loss, outputs = model.step(sess, encoder_inputs,
                                           decoder_inputs, encoder_len,
                                           decoder_len, True)

                outputs = [np.argmax(item) for item in outputs[0]]
            else:
                outputs = model.step_beam(sess,
                                          encoder_inputs,
                                          encoder_len,
                                          geneos=FLAGS.geneos)

            # If there is an EOS symbol in outputs, cut them at that point.
            if data_util.ID_EOS in outputs:
                outputs = outputs[:outputs.index(data_util.ID_EOS)]
            gen_sum = " ".join(data_util.sen_map2tok(outputs, sum_dict[1]))
            gen_sum = data_util.sen_postprocess(gen_sum)
            result.append(gen_sum)
            logging.info("Finish {} samples. :: {}".format(idx, gen_sum[:75]))

        #Get Encoder outputs
        batchidx = 0
        final_inputs = []
        final_outputs = []
        final_len = []
        while batchidx + FLAGS.batch_size <= len(data):
            encoder_inputs, decoder_inputs, encoder_len, decoder_len, class_output, class_len =\
            data_util.get_batch(
                {0: [(token_ids, [data_util.ID_GO, data_util.ID_EOS],[0,0])]}, _buckets, 0, FLAGS.batch_size, False, 0)

            _, _, enc_outputs = model.step(sess, encoder_inputs,
                                           decoder_inputs, encoder_len,
                                           decoder_len, True)

            enc_outputs = data_util.add_pad_for_hidden(enc_outputs,
                                                       _buckets[0][0])

            final_inputs.append(enc_outputs)
            final_outputs.append(class_output)
            final_len.append(class_len)

            batchidx += FLAGS.batch_size

        final_inputs = np.asarray(final_inputs)
        final_inputs = np.concatenate(final_inputs, 0)
        final_outputs = np.asarray(final_outputs)
        final_outputs = np.concatenate(final_outputs, 0)
        final_len = np.asarray(final_len)
        final_len = np.concatenate(final_len, 0)
        print(final_inputs.shape, final_outputs.shape, final_len.shape)

        #Hidden classifier
        step_loss, output = class_model.step(sess, final_inputs[:],
                                             final_outputs[:], final_len[:],
                                             True)

        clipped = np.array(output > 0.5, dtype=np.int)
        #label = data_util.hidden_label_gen(FLAGS.test_file, "data/test.1981.msg.txt")
        #make confusion matrix to get precision
        #tn, fp, fn, tp = confusion_matrix(label.flatten(), clipped.flatten()).ravel()
        #print("Test precision : ", tp/(tp+fp))

        with open(FLAGS.test_output, "w") as f:
            for idx, item in enumerate(result):
                print(item, file=f)
                for j in range(len(docs[idx])):
                    if clipped[idx][j] == 1:
                        print("Recommended identifier: " + docs[idx][j] + " ",
                              file=f)
                print("\n", file=f)
Exemple #5
0
def train():
    logging.info("Preparing summarization data.")
    docid, sumid, doc_dict, sum_dict, hidden_label= \
        data_util.load_data(
            FLAGS.data_dir + "/train.48615.diff",
            FLAGS.data_dir + "/train.48615.msg",
            FLAGS.data_dir + "/doc_dict.txt",
            FLAGS.data_dir + "/sum_dict.txt",
            FLAGS.doc_vocab_size, FLAGS.sum_vocab_size)

    val_docid, val_sumid, val_hidd_label = \
        data_util.load_valid_data(
            FLAGS.data_dir + "/valid.3000.diff",
            FLAGS.data_dir + "/valid.3000.msg",
            doc_dict, sum_dict)

    with tf.Session() as sess:
        # Create model.
        logging.info("Creating %d layers of %d units." %
                     (FLAGS.num_layers, FLAGS.size))
        train_writer = tf.summary.FileWriter(FLAGS.tfboard, sess.graph)
        model = create_model(sess, False)

        # Read data into buckets and compute their sizes.
        logging.info("Create buckets.")
        dev_set = create_bucket(val_docid, val_sumid, val_hidd_label)
        train_set = create_bucket(docid, sumid, hidden_label)

        train_bucket_sizes = [len(train_set[b]) for b in range(len(_buckets))]
        train_total_size = float(sum(train_bucket_sizes))
        train_buckets_scale = [
            sum(train_bucket_sizes[:i + 1]) / train_total_size
            for i in range(len(train_bucket_sizes))
        ]

        for (s_size, t_size, _), nsample in zip(_buckets, train_bucket_sizes):
            logging.info("Train set bucket ({}, {}) has {} samples.".format(
                s_size, t_size, nsample))

        # This is the training loop.
        step_time, loss = 0.0, 0.0

        current_step = sess.run(model.global_step)

        while current_step < FLAGS.max_iter:
            random_number_01 = np.random.random_sample()
            bucket_id = min([
                i for i in range(len(train_buckets_scale))
                if train_buckets_scale[i] > random_number_01
            ])

            # Get a batch and make a step.
            start_time = time.time()
            encoder_inputs, decoder_inputs, encoder_len, decoder_len, class_output, class_len = \
                data_util.get_batch(train_set, _buckets, bucket_id, FLAGS.batch_size, False,0)
            step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
                                      encoder_len, decoder_len, False,
                                      train_writer)

            step_time += (time.time() - start_time) / \
                FLAGS.steps_per_validation
            loss += step_loss * FLAGS.batch_size / np.sum(decoder_len) \
                / FLAGS.steps_per_validation
            current_step += 1

            # Once in a while, we save checkpoint.
            if current_step % FLAGS.steps_per_checkpoint == 0:
                # Save checkpoint and zero timer and loss.
                checkpoint_path = os.path.join(FLAGS.train_dir, "model.ckpt")
                model.saver.save(sess,
                                 checkpoint_path,
                                 global_step=model.global_step)

            # Once in a while, we print statistics and run evals.
            if current_step % FLAGS.steps_per_validation == 0:
                # Print statistics for the previous epoch.
                perplexity = np.exp(float(loss))
                logging.info("global step %d step-time %.2f ppl %.2f" %
                             (model.global_step.eval(), step_time, perplexity))

                step_time, loss = 0.0, 0.0
                # Run evals on development set and print their perplexity.
                for bucket_id in range(len(_buckets)):
                    if len(dev_set[bucket_id]) == 0:
                        logging.info("  eval: empty bucket %d" % (bucket_id))
                        continue
                    encoder_inputs, decoder_inputs,  encoder_len, decoder_len, class_output, class_len  =\
                        data_util.get_batch(dev_set, _buckets, bucket_id, FLAGS.batch_size, False, 0)
                    #cl_eval_loss, _ = class_model.step(sess, class_input, class_output, class_len, True)
                    eval_loss, _, _ = model.step(sess, encoder_inputs,
                                                 decoder_inputs, encoder_len,
                                                 decoder_len, True)
                    eval_loss = eval_loss * FLAGS.batch_size \
                        / np.sum(decoder_len)
                    eval_ppx = np.exp(float(eval_loss))
                    logging.info("  eval: bucket %d ppl %.2f" %
                                 (bucket_id, eval_ppx))
                sys.stdout.flush()

        #Get Encoder outputs
        batchidx = 0
        final_inputs = []
        final_outputs = []
        final_len = []
        while batchidx + FLAGS.batch_size <= train_bucket_sizes[0]:
            encoder_inputs, decoder_inputs, encoder_len, decoder_len, class_output, class_len = \
                data_util.get_batch(train_set, _buckets, bucket_id, FLAGS.batch_size, True, batchidx)

            _, _, enc_outputs = model.step(sess, encoder_inputs,
                                           decoder_inputs, encoder_len,
                                           decoder_len, True)

            enc_outputs = data_util.add_pad_for_hidden(enc_outputs,
                                                       _buckets[0][0])

            final_inputs.append(enc_outputs)
            final_outputs.append(class_output)
            final_len.append(class_len)

            batchidx += FLAGS.batch_size

        final_inputs = np.asarray(final_inputs)
        final_inputs = np.concatenate(final_inputs, 0)
        final_outputs = np.asarray(final_outputs)
        final_outputs = np.concatenate(final_outputs, 0)
        final_len = np.asarray(final_len)
        final_len = np.concatenate(final_len, 0)
        print(final_inputs.shape, final_outputs.shape, final_len.shape)

        #Hidden classifier
        class_model = create_class_model(sess, False)
        classification_curr_step = sess.run(class_model.global_step)
        i = 0
        while classification_curr_step <= FLAGS.class_max_iter:

            _, step_loss, output = class_model.step(sess,
                                                    final_inputs[i:(i + 160)],
                                                    final_outputs[i:(i + 160)],
                                                    final_len[i:(i + 160)],
                                                    False)
            classification_curr_step += 1

            clipped = np.array(output > 0.5, dtype=np.int)
            #print("i", i)
            #print("clfcurrstep",classification_curr_step)
            #print("clipped", clipped.flatten())
            #print("final_outputs", final_outputs[i:(i+160)].flatten())
            tn, fp, fn, tp = confusion_matrix(
                final_outputs[i:(i + 160)].flatten(),
                clipped.flatten()).ravel()
            if (classification_curr_step % 40 == 0):
                print("Train Precision", tp / (tp + fp + 0.1))
                print("Train Accuracy", (tp + tn) / (tp + fp + tn + fn))
            if (i + 160 == len(final_len)):
                i = 0
            else:
                i += 160

            # Once in a while, we save checkpoint.
            if classification_curr_step % FLAGS.steps_per_checkpoint == 0:
                # Save checkpoint and zero timer and loss.
                checkpoint_path = os.path.join(FLAGS.class_train_dir,
                                               "class_model.ckpt")
                class_model.saver.save(sess,
                                       checkpoint_path,
                                       global_step=class_model.global_step)

        print("test_file", FLAGS.test_file)
        docs, data = data_util.load_test_data(FLAGS.test_file, doc_dict)

        #test

        # Create model and load parameters.
        '''
        logging.info("Creating %d layers of %d units." %
                     (FLAGS.num_layers, FLAGS.size))

        result = []
        for idx, token_ids in enumerate(data):

            # Get a 1-element batch to feed the sentence to the model.
            encoder_inputs, decoder_inputs, encoder_len, decoder_len, class_output, class_len =\
                data_util.get_batch(
                    {0: [(token_ids, [data_util.ID_GO, data_util.ID_EOS],[0,0])]}, _buckets, 0, FLAGS.batch_size, False, 0)

            if FLAGS.batch_size == 1 and FLAGS.geneos:
                loss, outputs = model.step(sess,
                    encoder_inputs, decoder_inputs,
                    encoder_len, decoder_len, False)

                outputs = [np.argmax(item) for item in outputs[0]]
            else:
                outputs = model.step_beam(
                    sess, encoder_inputs, encoder_len, geneos=FLAGS.geneos)

            # If there is an EOS symbol in outputs, cut them at that point.
            if data_util.ID_EOS in outputs:
                outputs = outputs[:outputs.index(data_util.ID_EOS)]
            gen_sum = " ".join(data_util.sen_map2tok(outputs, sum_dict[1]))
            gen_sum = data_util.sen_postprocess(gen_sum)
            result.append(gen_sum)
            logging.info("Finish {} samples. :: {}".format(idx, gen_sum[:75]))
        '''

        #Get Encoder outputs
        docid, sumid, doc_dict, sum_dict, hidden_label= \
        data_util.load_data(
            FLAGS.data_dir + "/test.1981.diff.txt",
            FLAGS.data_dir + "/test.1981.msg.txt",
            FLAGS.data_dir + "/doc_dict.txt",
            FLAGS.data_dir + "/sum_dict.txt",
            FLAGS.doc_vocab_size, FLAGS.sum_vocab_size)
        test_set = create_bucket(docid, sumid, hidden_label)
        test_bucket_sizes = [len(test_set[b]) for b in range(len(_buckets))]
        test_total_size = float(sum(test_bucket_sizes))
        test_buckets_scale = [
            sum(test_bucket_sizes[:i + 1]) / test_total_size
            for i in range(len(test_bucket_sizes))
        ]
        batchidx = 0
        final_inputs = []
        final_outputs = []
        final_len = []
        #data.shape == (1, 158, 3) so I changed FLAGS.batch_size
        FLAGS.batch_size = 158
        while batchidx + FLAGS.batch_size <= len(data):
            #bucket_id = (i for i in range(len(test_buckets_scale))
            encoder_inputs, decoder_inputs, encoder_len, decoder_len, class_output, class_len = \
                data_util.get_batch(test_set, _buckets, bucket_id, FLAGS.batch_size, True, batchidx)

            _, _, enc_outputs = model.step(sess, encoder_inputs,
                                           decoder_inputs, encoder_len,
                                           decoder_len, True)

            enc_outputs = data_util.add_pad_for_hidden(enc_outputs,
                                                       _buckets[0][0])

            final_inputs.append(enc_outputs)
            final_outputs.append(class_output)
            final_len.append(class_len)

            batchidx += 1

        final_inputs = np.asarray(final_inputs)
        final_inputs = np.concatenate(final_inputs, 0)
        final_outputs = np.asarray(final_outputs)
        final_outputs = np.concatenate(final_outputs, 0)
        final_len = np.asarray(final_len)
        final_len = np.concatenate(final_len, 0)
        print(final_inputs.shape, final_outputs.shape, final_len.shape)

        #Hidden classifier
        step_loss, output = class_model.step(sess, final_inputs[:],
                                             final_outputs[:], final_len[:],
                                             True)

        clipped = np.array(output > 0.5, dtype=np.int)
        tn, fp, fn, tp = confusion_matrix(final_outputs[:].flatten(),
                                          clipped.flatten()).ravel()
        #with open('data/test.1981.msg.txt')as reader:
        #    testmsg=[]
        #    for i in range(1981):
        #        testmsg.append(reader.readline())
        #sums  = list(map(lambda x: x.split(), testmsg))
        #labels = data_util.hidden_label_gen(FLAGS.test_file, sums)
        #tn, fp, fn, tp = confusion_matrix(labels.flatten(), clipped.flatten())
        print("Test Precision : ", tp / (tp + fp + 0.1))
        print("Test Accuracy", (tp + tn) / (tp + fp + tn + fn))
        with open(FLAGS.test_output, "w") as f:
            for idx in range(1981):
                for j in range(len(docs[idx])):
                    if clipped[idx][j] == 1:
                        print("Recommended identifier: " + docs[idx][j] + " ",
                              file=f)
                print("\n", file=f)
Exemple #6
0
# config loading
config = Config()

# data loading
train_source, train_source_length, \
    train_target, train_target_length = load_data(
        FLAGS.train_source_file, FLAGS.train_target_file,
        config.source_max, config.target_max)

test_source, test_source_length, \
    test_target, test_target_length = load_data(
        FLAGS.test_source_file, FLAGS.test_target_file,
        config.source_max, config.target_max)

batch_generator = get_batch(train_source, train_source_length, train_target,
                            train_target_length, config.batch_size,
                            config.num_epochs)

# model build
model = Seq2Seq(config, mode='train')
model.build()
sess = tf.Session()
if FLAGS.keep_training:
    checkpoint_file = tf.train.latest_checkpoint(FLAGS.model_dir)
    saver = tf.train.Saver()
    saver.restore(sess, checkpoint_file)
else:
    sess.run(tf.global_variables_initializer())

# summaries & saver
summary_writer = tf.summary.FileWriter(FLAGS.summary_dir)