def load_er_data():
    frac_train = 0.9
    pattern = 'nrange-%d-%d-n_graph-%d-p-%.2f' % (
        cmd_args.min_n, cmd_args.max_n, cmd_args.n_graphs, cmd_args.er_p)

    num_train = int(frac_train * cmd_args.n_graphs)

    train_glist = []
    test_glist = []
    label_map = {}
    for i in range(cmd_args.min_c, cmd_args.max_c + 1):
        cur_list = load_pkl(
            '%s/ncomp-%d-%s.pkl' % (cmd_args.data_folder, i, pattern),
            cmd_args.n_graphs)
        assert len(cur_list) == cmd_args.n_graphs
        train_glist += [S2VGraph(cur_list[j], i) for j in range(num_train)]
        test_glist += [
            S2VGraph(cur_list[j], i) for j in range(num_train, len(cur_list))
        ]
        label_map[i] = i - cmd_args.min_c
    cmd_args.num_class = len(label_map)
    cmd_args.feat_dim = 1
    print('# train:', len(train_glist), ' # test:', len(test_glist))

    return label_map, train_glist, test_glist
def load_graphs():
    frac_train = 0.9
    pattern = 'nrange-%d-%d-n_graph-%d-p-%.2f' % (
        cmd_args.min_n, cmd_args.max_n, cmd_args.n_graphs, cmd_args.er_p)

    num_train = int(frac_train * cmd_args.n_graphs)

    train_glist = []
    test_glist = []
    label_map = {}
    for i in range(cmd_args.min_c, cmd_args.max_c + 1):
        cur_list = load_pkl(
            '%s/ncomp-%d-%s.pkl' % (cmd_args.data_folder, i, pattern),
            cmd_args.n_graphs)
        print('Input filename:\n',
              '%s/ncomp-%d-%s.pkl' % (cmd_args.data_folder, i, pattern))
        assert len(cur_list) == cmd_args.n_graphs
        print('----- type(cur_list) =\n', type(cur_list))
        print('----- type(cur_list[0]) =\n', type(cur_list[0]))
        train_glist += [S2VGraph(cur_list[j], i) for j in range(num_train)]
        test_glist += [
            S2VGraph(cur_list[j], i) for j in range(num_train, len(cur_list))
        ]
        label_map[i] = i - cmd_args.min_c

    print('# train:', len(train_glist), ' # test:', len(test_glist))

    return label_map, train_glist, test_glist