def __init__(self, vocab_filepath, stride_ms=10.0, window_ms=20.0, target_sample_rate=16000, use_dB_normalization=True, target_dB=-20): self._audio_featurizer = AudioFeaturizer( stride_ms=stride_ms, window_ms=window_ms, target_sample_rate=target_sample_rate, use_dB_normalization=use_dB_normalization, target_dB=target_dB) self._text_featurizer = TextFeaturizer(vocab_filepath)
def __init__(self, vocab_filepath, specgram_type='linear', stride_ms=10.0, window_ms=20.0, max_freq=None, target_sample_rate=16000, use_dB_normalization=True, target_dB=-20): self._audio_featurizer = AudioFeaturizer(specgram_type=specgram_type, stride_ms=stride_ms, window_ms=window_ms, max_freq=max_freq, target_sample_rate=target_sample_rate, use_dB_normalization=use_dB_normalization, target_dB=target_dB) self._text_featurizer = TextFeaturizer(vocab_filepath)
class SpeechFeaturizer(object): """Speech featurizer, for extracting features from both audio and transcript contents of SpeechSegment. Currently, for audio parts, it supports feature types of linear spectrogram and mfcc; for transcript parts, it only supports char-level tokenizing and conversion into a list of token indices. Note that the token indexing order follows the given vocabulary file. :param vocab_filepath: Filepath to load vocabulary for token indices conversion. :type specgram_type: str :param specgram_type: Specgram feature type. Options: 'linear', 'mfcc'. :type specgram_type: str :param stride_ms: Striding size (in milliseconds) for generating frames. :type stride_ms: float :param window_ms: Window size (in milliseconds) for generating frames. :type window_ms: float :param max_freq: When specgram_type is 'linear', only FFT bins corresponding to frequencies between [0, max_freq] are returned; when specgram_type is 'mfcc', max_freq is the highest band edge of mel filters. :types max_freq: None|float :param target_sample_rate: Speech are resampled (if upsampling or downsampling is allowed) to this before extracting spectrogram features. :type target_sample_rate: float :param use_dB_normalization: Whether to normalize the audio to a certain decibels before extracting the features. :type use_dB_normalization: bool :param target_dB: Target audio decibels for normalization. :type target_dB: float """ def __init__(self, vocab_filepath, specgram_type='linear', stride_ms=10.0, window_ms=20.0, max_freq=None, target_sample_rate=16000, use_dB_normalization=True, target_dB=-20): self._audio_featurizer = AudioFeaturizer( specgram_type=specgram_type, stride_ms=stride_ms, window_ms=window_ms, max_freq=max_freq, target_sample_rate=target_sample_rate, use_dB_normalization=use_dB_normalization, target_dB=target_dB) self._text_featurizer = TextFeaturizer(vocab_filepath) def featurize(self, speech_segment, keep_transcription_text): """提取语音片段的特征 1. For audio parts, extract the audio features. 2. For transcript parts, keep the original text or convert text string to a list of token indices in char-level. :param audio_segment: Speech segment to extract features from. :type audio_segment: SpeechSegment :return: A tuple of 1) spectrogram audio feature in 2darray, 2) list of char-level token indices. :rtype: tuple """ audio_feature = self._audio_featurizer.featurize(speech_segment) if keep_transcription_text: return audio_feature, speech_segment.transcript text_ids = self._text_featurizer.featurize(speech_segment.transcript) return audio_feature, text_ids @property def vocab_size(self): """返回词汇表大小 :return: Vocabulary size. :rtype: int """ return self._text_featurizer.vocab_size @property def vocab_list(self): """返回词汇表的list :return: Vocabulary in list. :rtype: list """ return self._text_featurizer.vocab_list