4: 'Other'} n_comp = 200 handler = data_utils.data_handler(data_dir_path, sample_fractions=sample_fractions, input_size=input_size, labels_type='classes', output_size=output_size, normalize_input=False, create_samples_bool=False, preprocess_bool=False, crp_factor=2, ds_factor=3) ### Load data X_train, y_train = data_utils.load_samples(handler, 'training', grey_scale=True) X_val, y_val = data_utils.load_samples(handler, 'validation', grey_scale=True) ### Perform PCA X_train_pca, X_val_pca, pca = data_utils.compute_pca( X_train=X_train, n_comp=n_comp, X_test=X_val) ### Train an one vs. all Logistic Regression model param_grid = {'C': 10.**np.arange(-8, 8, 0.5)} clf = GridSearchCV(LogisticRegression(multi_class='ovr'), param_grid, scoring="accuracy") t0 = time() clf = clf.fit(X_train_pca, y_train) print("done in %0.3fs" % (time() - t0)) print(clf.best_estimator_) acc_score = [x[1] for x in clf.grid_scores_] plt.figure(figsize=(6, 4)) ax = plt.gca()
sample_fractions=sample_fractions, input_size=input_size, labels_type='classes', output_size=output_size, normalize_input=False, create_samples_bool=False, preprocess_bool=False, crp_factor=2, ds_factor=3) X_train, y_train = data_utils.load_samples(handler, sample='training', grey_scale=True) # PCA Variance Explained X_train_pca, pca = data_utils.compute_pca(X_train, n_comp=X_train.shape[1]) plt.plot(np.cumsum(pca.explained_variance_ratio_)) plt.xlabel('Number of Components') plt.ylabel('Explained Variance') plt.title('Cumulative Variance Explained ') plt.show() plt.savefig(os.path.join(figures_dir_path, 'PCA_Variance_Explained.png')) # Reconstruted Images raw_img = X_train[5000, :].reshape(input_size) vector_img = raw_img.reshape(np.prod(raw_img.shape)) plt.figure(figsize=(10, 8)) plt.subplot(2, 3, 1) io.imshow(raw_img, cmap="gray")