choices=[2, 4, 8], help='upscale factor') parser.add_argument('--epochs', default=100, type=int, help='train epoch number') if __name__ == '__main__': opt = parser.parse_args() crop_size = opt.crop_size upscale = opt.upscale_factor epoch = opt.epochs train_set = load_training_data('DIV2K_train_HR', crop_size=crop_size, upscale=upscale) val_set = load_val_data('DIV2K_valid_HR', upscale=upscale) train_loader = DataLoader(dataset=train_set, num_workers=4, batch_size=64, shuffle=True) val_loader = DataLoader(dataset=val_set, num_workers=4, batch_size=1, shuffle=False) netG = Generator(upscale) print('# generator parameters:', sum(param.numel() for param in netG.parameters())) netD = Discriminator()
#sys.stdout = f print("Writing to {}\n".format(out_dir)) print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") with open(out_dir+'/params', 'w') as f: for attr, value in sorted(FLAGS.__flags.items()): f.write("{}={}".format(attr.upper(), value)) f.write("\n") # hyper-parameters end here training_path = 'training_set_rel3.tsv' essay_list, resolved_scores, essay_id = data_utils.load_training_data(training_path, essay_set_id) max_score = max(resolved_scores) min_score = min(resolved_scores) if essay_set_id == 7: min_score, max_score = 0, 30 elif essay_set_id == 8: min_score, max_score = 0, 60 print 'max_score is {} \t min_score is {}\n'.format(max_score, min_score) with open(out_dir+'/params', 'a') as f: f.write('max_score is {} \t min_score is {} \n'.format(max_score, min_score)) # include max score score_range = range(min_score, max_score+1) #word_idx, _ = data_utils.build_vocab(essay_list, vocab_limit)
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import LSTM, Dense import numpy as np import data_utils data_dim = 128 timesteps = 128 train_data = data_utils.load_training_data() test_data = data_utils.load_test_data() # loader = data_utils.DataLoader(data=data,batch_size=train_config.batch_size, num_steps=train_config.num_steps) data_loader = data_utils.DataLoader(train_data, 7352, 1) # x_test, y_test = data_utils.DataLoader(train_data, 128, 1).next_batch() # expected input data shape: (batch_size, timesteps, data_dim) model = Sequential() model.add( LSTM(256, return_sequences=True, input_shape=(1, 1))) # returns a sequence of vectors of dimension 32 model.add(LSTM( 256, return_sequences=True)) # returns a sequence of vectors of dimension 32 model.add(LSTM( 256, return_sequences=True)) # return a single vector of dimension 32 model.add(Dense(128, activation="sigmoid", name="DENSE1")) model.add(Dense(72, activation="sigmoid", name="DENSE2")) model.add(Dense(1, activation='softmax'))