Exemple #1
0
def export_annotations(task_id, dataset_id, categories):
    """
    Exports annotations from current dataset to single json file accessible from:
    Datasets->Chosen Dataset -> Exports
    """
    task = TaskModel.objects.get(id=task_id)
    dataset = DatasetModel.objects.get(id=dataset_id)
    task.update(status="PROGRESS")
    socket = create_socket()
    task.info("Beginning Export (COCO Format)")

    task.info("===== Getting COCO labels =====")
    coco, category_names = collect_coco_annotations(task, categories, dataset, socket)
    directory = f"{dataset.directory}.exports/"
    file_path = f"{directory}coco-{datetime.now().strftime('%m_%d_%Y__%H_%M_%S_%f')}.json"

    if not os.path.exists(directory):
        os.makedirs(directory)

    task.info(f"Writing export to file {file_path}")
    with open(file_path, 'w') as fp:
        json.dump(coco, fp)

    task.info("Creating export object")
    export = ExportModel(dataset_id=dataset.id, path=file_path, tags=["COCO", *category_names])
    export.save()
    task.set_progress(100, socket=socket)
Exemple #2
0
    def get(self, dataset_id):
        """ Returns exports of images and annotations in the dataset (only owners) """
        dataset = current_user.datasets.filter(id=dataset_id).first()

        if dataset is None:
            return {"message": "Invalid dataset ID"}, 400

        if not current_user.can_download(dataset):
            return {
                "message":
                "You do not have permission to download the dataset's annotations"
            }, 403

        exports = ExportModel.objects(
            dataset_id=dataset.id).order_by('-created_at').limit(50)

        dict_export = []
        for export in exports:

            time_delta = datetime.datetime.utcnow() - export.created_at
            dict_export.append({
                'id': export.id,
                'ago': query_util.td_format(time_delta),
                'tags': export.tags
            })

        return dict_export
Exemple #3
0
def export_annotations_to_tf_record(task_id, dataset_id, categories, validation_set_size, test_set_size,
                                    train_shards_number, val_shards_number, test_shards_number):
    """
    Loads COCO annotations from chosen dataset, converts them to tf record format and exports them
    to a single ZIP file accessible from:
    Datasets->Chosen Dataset -> Exports
    """
    task = TaskModel.objects.get(id=task_id)
    dataset = DatasetModel.objects.get(id=dataset_id)
    task.update(status="PROGRESS")
    socket = create_socket()
    task.info("===== Beginning Export (TF Record Format) =====")

    # Getting coco annotations
    task.info("===== Getting COCO labels =====")
    coco, category_names = collect_coco_annotations(task, categories, dataset, socket)

    out_directory = f"{dataset.directory}.exports/"
    image_dir = f"{dataset.directory}"
    if not os.path.exists(out_directory):
        os.makedirs(out_directory)

    task.info("===== Converting to TF Record =====")
    task.info(f"Number of train shards: {train_shards_number}")
    task.info(f"Number of validation shards: {val_shards_number}")
    task.info(f"Number of test shards: {test_shards_number}")
    tf_records_files_path = convert_coco_to_tfrecord(image_dir, json.dumps(coco), out_directory, validation_set_size,
                                                     test_set_size, task, train_shards_number, val_shards_number,
                                                     test_shards_number, include_masks=True)
    task.info(f"Created {len(tf_records_files_path)} TF Record files")

    zip_path = f"{out_directory}tf_record_zip-{datetime.now().strftime('%m_%d_%Y__%H_%M_%S_%f')}.zip"
    task.info(f"Writing TF Records to zip file")
    with zipfile.ZipFile(zip_path, 'w') as zipObj:
        for tf_record_file in tf_records_files_path:
            zipObj.write(tf_record_file, os.path.basename(tf_record_file))
    # Clean exports
    for tf_record_file in tf_records_files_path:
        os.remove(tf_record_file)

    export = ExportModel(dataset_id=dataset.id, path=zip_path, tags=["TF Record", *category_names])
    export.save()
    task.set_progress(100, socket=socket)
    def delete(self, export_id):
        """ Returns exports """
        export = ExportModel.objects(id=export_id).first()
        if export is None:
            return {"message": "Invalid export ID"}, 400

        dataset = current_user.datasets.filter(id=export.dataset_id).first()
        if dataset is None:
            return {"message": "Invalid dataset ID"}, 400
        
        export.delete()
        return {'success': True}
    def get(self, export_id):
        """ Returns exports """
        export = ExportModel.objects(id=export_id).first()
        if export is None:
            return {"message": "Invalid export ID"}, 400

        dataset = current_user.datasets.filter(id=export.dataset_id).first()
        if dataset is None:
            return {"message": "Invalid dataset ID"}, 400
        
        time_delta = datetime.datetime.utcnow() - export.created_at
        d = fix_ids(export)
        d['ago'] = query_util.td_format(time_delta)
        return d
    def get(self, export_id):
        """ Returns exports """

        export = ExportModel.objects(id=export_id).first()
        if export is None:
            return {"message": "Invalid export ID"}, 400

        dataset = current_user.datasets.filter(id=export.dataset_id).first()
        if dataset is None:
            return {"message": "Invalid dataset ID"}, 400
        
        if not current_user.can_download(dataset):
            return {"message": "You do not have permission to download the dataset's annotations"}, 403

        return send_file(export.path, attachment_filename=f"{dataset.name}-{'-'.join(export.tags)}.json", as_attachment=True)
Exemple #7
0
def export_annotations(task_id,
                       dataset_id,
                       categories,
                       with_empty_images=False):

    task = TaskModel.objects.get(id=task_id)
    dataset = DatasetModel.objects.get(id=dataset_id)

    task.update(status="PROGRESS")
    socket = create_socket()

    task.info("Beginning Export (COCO Format)")

    db_categories = CategoryModel.objects(id__in=categories, deleted=False) \
        .only(*CategoryModel.COCO_PROPERTIES)
    db_images = ImageModel.objects(
        deleted=False, dataset_id=dataset.id).only(*ImageModel.COCO_PROPERTIES)
    db_annotations = AnnotationModel.objects(deleted=False,
                                             category_id__in=categories)

    total_items = db_categories.count()

    coco = {'images': [], 'categories': [], 'annotations': []}

    total_items += db_images.count()
    progress = 0

    # iterate though all categoires and upsert
    category_names = []
    for category in fix_ids(db_categories):

        if len(category.get('keypoint_labels', [])) > 0:
            category['keypoints'] = category.pop('keypoint_labels', [])
            category['skeleton'] = category.pop('keypoint_edges', [])
        else:
            if 'keypoint_edges' in category:
                del category['keypoint_edges']
            if 'keypoint_labels' in category:
                del category['keypoint_labels']

        task.info(f"Adding category: {category.get('name')}")
        coco.get('categories').append(category)
        category_names.append(category.get('name'))

        progress += 1
        task.set_progress((progress / total_items) * 100, socket=socket)

    total_annotations = db_annotations.count()
    total_images = db_images.count()
    for image in db_images:
        image = fix_ids(image)

        progress += 1
        task.set_progress((progress / total_items) * 100, socket=socket)

        annotations = db_annotations.filter(image_id=image.get('id'))\
            .only(*AnnotationModel.COCO_PROPERTIES)
        annotations = fix_ids(annotations)

        if len(annotations) == 0:
            if with_empty_images:
                coco.get('images').append(image)
            continue

        num_annotations = 0
        for annotation in annotations:

            has_keypoints = len(annotation.get('keypoints', [])) > 0
            has_segmentation = len(annotation.get('segmentation', [])) > 0

            if has_keypoints or has_segmentation:

                if not has_keypoints:
                    if 'keypoints' in annotation:
                        del annotation['keypoints']
                else:
                    arr = np.array(annotation.get('keypoints', []))
                    arr = arr[2::3]
                    annotation['num_keypoints'] = len(arr[arr > 0])

                num_annotations += 1
                coco.get('annotations').append(annotation)

        task.info(
            f"Exporting {num_annotations} annotations for image {image.get('id')}"
        )
        coco.get('images').append(image)

    task.info(
        f"Done export {total_annotations} annotations and {total_images} images from {dataset.name}"
    )

    timestamp = time.time()
    directory = f"{dataset.directory}.exports/"
    file_path = f"{directory}coco-{timestamp}.json"

    if not os.path.exists(directory):
        os.makedirs(directory)

    task.info(f"Writing export to file {file_path}")
    with open(file_path, 'w') as fp:
        json.dump(coco, fp)

    task.info("Creating export object")
    export = ExportModel(dataset_id=dataset.id,
                         path=file_path,
                         tags=["COCO", *category_names])
    export.save()

    task.set_progress(100, socket=socket)