def _transform_batch(self, func, return_type: Optional[Union[SeriesType, ScalarType]]): from databricks.koalas.groupby import GroupBy from databricks.koalas.series import Series, first_series from databricks import koalas as ks if not isinstance(func, types.FunctionType): f = func func = lambda *args, **kwargs: f(*args, **kwargs) if return_type is None: # TODO: In this case, it avoids the shortcut for now (but only infers schema) # because it returns a series from a different DataFrame and it has a different # anchor. We should fix this to allow the shortcut or only allow to infer # schema. limit = ks.get_option("compute.shortcut_limit") pser = self._kser.head(limit + 1)._to_internal_pandas() transformed = pser.transform(func) kser = Series(transformed) # type: Series spark_return_type = force_decimal_precision_scale( as_nullable_spark_type(kser.spark.data_type) ) dtype = kser.dtype else: spark_return_type = return_type.spark_type dtype = return_type.dtype kdf = self._kser.to_frame() columns = kdf._internal.spark_column_names def pandas_concat(series): # The input can only be a DataFrame for struct from Spark 3.0. # This works around to make the input as a frame. See SPARK-27240 pdf = pd.concat(series, axis=1) pdf.columns = columns return pdf def apply_func(pdf): return func(first_series(pdf)).to_frame() return_schema = StructType([StructField(SPARK_DEFAULT_SERIES_NAME, spark_return_type)]) output_func = GroupBy._make_pandas_df_builder_func( kdf, apply_func, return_schema, retain_index=False ) pudf = pandas_udf( lambda *series: first_series(output_func(pandas_concat(series))), returnType=spark_return_type, functionType=PandasUDFType.SCALAR, ) return self._kser._with_new_scol( scol=pudf(*kdf._internal.spark_columns).alias( self._kser._internal.spark_column_names[0] ), dtype=dtype, )
def transform_batch(self, func, *args, **kwargs): """ Transform chunks with a function that takes pandas DataFrame and outputs pandas DataFrame. The pandas DataFrame given to the function is of a batch used internally. The length of each input and output should be the same. See also `Transform and apply a function <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_. .. note:: the `func` is unable to access to the whole input frame. Koalas internally splits the input series into multiple batches and calls `func` with each batch multiple times. Therefore, operations such as global aggregations are impossible. See the example below. >>> # This case does not return the length of whole frame but of the batch internally ... # used. ... def length(pdf) -> ks.DataFrame[int]: ... return pd.DataFrame([len(pdf)] * len(pdf)) ... >>> df = ks.DataFrame({'A': range(1000)}) >>> df.koalas.transform_batch(length) # doctest: +SKIP c0 0 83 1 83 2 83 ... .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def plus_one(x) -> ks.DataFrame[float, float]: ... return x + 1 If the return type is specified, the output column names become `c0, c1, c2 ... cn`. These names are positionally mapped to the returned DataFrame in ``func``. To specify the column names, you can assign them in a pandas friendly style as below: >>> def plus_one(x) -> ks.DataFrame['a': float, 'b': float]: ... return x + 1 >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) >>> def plus_one(x) -> ks.DataFrame[zip(pdf.dtypes, pdf.columns)]: ... return x + 1 Parameters ---------- func : function Function to transform each pandas frame. *args Positional arguments to pass to func. **kwargs Keyword arguments to pass to func. Returns ------- DataFrame See Also -------- DataFrame.koalas.apply_batch: For row/columnwise operations. Series.koalas.transform_batch: transform the search as each pandas chunks. Examples -------- >>> df = ks.DataFrame([(1, 2), (3, 4), (5, 6)], columns=['A', 'B']) >>> df A B 0 1 2 1 3 4 2 5 6 >>> def plus_one_func(pdf) -> ks.DataFrame[int, int]: ... return pdf + 1 >>> df.koalas.transform_batch(plus_one_func) c0 c1 0 2 3 1 4 5 2 6 7 >>> def plus_one_func(pdf) -> ks.DataFrame['A': int, 'B': int]: ... return pdf + 1 >>> df.koalas.transform_batch(plus_one_func) A B 0 2 3 1 4 5 2 6 7 >>> def plus_one_func(pdf) -> ks.Series[int]: ... return pdf.B + 1 >>> df.koalas.transform_batch(plus_one_func) 0 3 1 5 2 7 dtype: int32 You can also omit the type hints so Koalas infers the return schema as below: >>> df.koalas.transform_batch(lambda pdf: pdf + 1) A B 0 2 3 1 4 5 2 6 7 >>> (df * -1).koalas.transform_batch(abs) A B 0 1 2 1 3 4 2 5 6 Note that you should not transform the index. The index information will not change. >>> df.koalas.transform_batch(lambda pdf: pdf.B + 1) 0 3 1 5 2 7 Name: B, dtype: int64 You can also specify extra arguments as below. >>> df.koalas.transform_batch(lambda pdf, a, b, c: pdf.B + a + b + c, 1, 2, c=3) 0 8 1 10 2 12 Name: B, dtype: int64 """ from databricks.koalas.groupby import GroupBy from databricks.koalas.frame import DataFrame from databricks.koalas.series import first_series from databricks import koalas as ks assert callable( func), "the first argument should be a callable function." spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None original_func = func func = lambda o: original_func(o, *args, **kwargs) names = self._kdf._internal.to_internal_spark_frame.schema.names should_by_pass = LooseVersion(pyspark.__version__) >= "3.0" def pandas_concat(series): # The input can only be a DataFrame for struct from Spark 3.0. # This works around to make the input as a frame. See SPARK-27240 pdf = pd.concat(series, axis=1) pdf = pdf.rename(columns=dict(zip(pdf.columns, names))) return pdf def pandas_extract(pdf, name): # This is for output to work around a DataFrame for struct # from Spark 3.0. See SPARK-23836 return pdf[name] def pandas_series_func(f): ff = f return lambda *series: ff(pandas_concat(series)) def pandas_frame_func(f): ff = f return lambda *series: pandas_extract(ff(pandas_concat(series)), field.name) if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = ks.get_option("compute.shortcut_limit") pdf = self._kdf.head(limit + 1)._to_internal_pandas() transformed = func(pdf) if not isinstance(transformed, (pd.DataFrame, pd.Series)): raise ValueError( "The given function should return a frame; however, " "the return type was %s." % type(transformed)) if len(transformed) != len(pdf): raise ValueError( "transform_batch cannot produce aggregated results") kdf_or_kser = ks.from_pandas(transformed) if isinstance(kdf_or_kser, ks.Series): kser = kdf_or_kser pudf = pandas_udf( func if should_by_pass else pandas_series_func(func), returnType=kser.spark.data_type, functionType=PandasUDFType.SCALAR, ) columns = self._kdf._internal.spark_columns # TODO: Index will be lost in this case. internal = self._kdf._internal.copy( column_labels=kser._internal.column_labels, data_spark_columns=[ (pudf(F.struct(*columns)) if should_by_pass else pudf( *columns)).alias( kser._internal.data_spark_column_names[0]) ], column_label_names=kser._internal.column_label_names, ) return first_series(DataFrame(internal)) else: kdf = kdf_or_kser if len(pdf) <= limit: # only do the short cut when it returns a frame to avoid # operations on different dataframes in case of series. return kdf return_schema = kdf._internal.to_internal_spark_frame.schema # Force nullability. return_schema = StructType([ StructField(field.name, field.dataType) for field in return_schema.fields ]) self_applied = DataFrame(self._kdf._internal.resolved_copy) output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=True) columns = self_applied._internal.spark_columns if should_by_pass: pudf = pandas_udf(output_func, returnType=return_schema, functionType=PandasUDFType.SCALAR) temp_struct_column = verify_temp_column_name( self_applied._internal.spark_frame, "__temp_struct__") applied = pudf( F.struct(*columns)).alias(temp_struct_column) sdf = self_applied._internal.spark_frame.select(applied) sdf = sdf.selectExpr("%s.*" % temp_struct_column) else: applied = [] for field in return_schema.fields: applied.append( pandas_udf( pandas_frame_func(output_func), returnType=field.dataType, functionType=PandasUDFType.SCALAR, )(*columns).alias(field.name)) sdf = self_applied._internal.spark_frame.select(*applied) return DataFrame(kdf._internal.with_new_sdf(sdf)) else: return_type = infer_return_type(original_func) return_schema = return_type.tpe is_return_series = isinstance(return_type, SeriesType) is_return_dataframe = isinstance(return_type, DataFrameType) if not is_return_dataframe and not is_return_series: raise TypeError( "The given function should specify a frame or series as its type " "hints; however, the return type was %s." % return_sig) if is_return_series: pudf = pandas_udf( func if should_by_pass else pandas_series_func(func), returnType=return_schema, functionType=PandasUDFType.SCALAR, ) columns = self._kdf._internal.spark_columns internal = self._kdf._internal.copy( column_labels=[None], data_spark_columns=[ (pudf(F.struct(*columns)) if should_by_pass else pudf( *columns)).alias(SPARK_DEFAULT_SERIES_NAME) ], column_label_names=None, ) return first_series(DataFrame(internal)) else: self_applied = DataFrame(self._kdf._internal.resolved_copy) output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=False) columns = self_applied._internal.spark_columns if should_by_pass: pudf = pandas_udf(output_func, returnType=return_schema, functionType=PandasUDFType.SCALAR) temp_struct_column = verify_temp_column_name( self_applied._internal.spark_frame, "__temp_struct__") applied = pudf( F.struct(*columns)).alias(temp_struct_column) sdf = self_applied._internal.spark_frame.select(applied) sdf = sdf.selectExpr("%s.*" % temp_struct_column) else: applied = [] for field in return_schema.fields: applied.append( pandas_udf( pandas_frame_func(output_func), returnType=field.dataType, functionType=PandasUDFType.SCALAR, )(*columns).alias(field.name)) sdf = self_applied._internal.spark_frame.select(*applied) return DataFrame(sdf)
def apply_batch(self, func, args=(), **kwds): """ Apply a function that takes pandas DataFrame and outputs pandas DataFrame. The pandas DataFrame given to the function is of a batch used internally. See also `Transform and apply a function <https://koalas.readthedocs.io/en/latest/user_guide/transform_apply.html>`_. .. note:: the `func` is unable to access to the whole input frame. Koalas internally splits the input series into multiple batches and calls `func` with each batch multiple times. Therefore, operations such as global aggregations are impossible. See the example below. >>> # This case does not return the length of whole frame but of the batch internally ... # used. ... def length(pdf) -> ks.DataFrame[int]: ... return pd.DataFrame([len(pdf)]) ... >>> df = ks.DataFrame({'A': range(1000)}) >>> df.koalas.apply_batch(length) # doctest: +SKIP c0 0 83 1 83 2 83 ... 10 83 11 83 .. note:: this API executes the function once to infer the type which is potentially expensive, for instance, when the dataset is created after aggregations or sorting. To avoid this, specify return type in ``func``, for instance, as below: >>> def plus_one(x) -> ks.DataFrame[float, float]: ... return x + 1 If the return type is specified, the output column names become `c0, c1, c2 ... cn`. These names are positionally mapped to the returned DataFrame in ``func``. To specify the column names, you can assign them in a pandas friendly style as below: >>> def plus_one(x) -> ks.DataFrame["a": float, "b": float]: ... return x + 1 >>> pdf = pd.DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) >>> def plus_one(x) -> ks.DataFrame[zip(pdf.dtypes, pdf.columns)]: ... return x + 1 Parameters ---------- func : function Function to apply to each pandas frame. args : tuple Positional arguments to pass to `func` in addition to the array/series. **kwds Additional keyword arguments to pass as keywords arguments to `func`. Returns ------- DataFrame See Also -------- DataFrame.apply: For row/columnwise operations. DataFrame.applymap: For elementwise operations. DataFrame.aggregate: Only perform aggregating type operations. DataFrame.transform: Only perform transforming type operations. Series.koalas.transform_batch: transform the search as each pandas chunks. Examples -------- >>> df = ks.DataFrame([(1, 2), (3, 4), (5, 6)], columns=['A', 'B']) >>> df A B 0 1 2 1 3 4 2 5 6 >>> def query_func(pdf) -> ks.DataFrame[int, int]: ... return pdf.query('A == 1') >>> df.koalas.apply_batch(query_func) c0 c1 0 1 2 >>> def query_func(pdf) -> ks.DataFrame["A": int, "B": int]: ... return pdf.query('A == 1') >>> df.koalas.apply_batch(query_func) A B 0 1 2 You can also omit the type hints so Koalas infers the return schema as below: >>> df.koalas.apply_batch(lambda pdf: pdf.query('A == 1')) A B 0 1 2 You can also specify extra arguments. >>> def calculation(pdf, y, z) -> ks.DataFrame[int, int]: ... return pdf ** y + z >>> df.koalas.apply_batch(calculation, args=(10,), z=20) c0 c1 0 21 1044 1 59069 1048596 2 9765645 60466196 You can also use ``np.ufunc`` and built-in functions as input. >>> df.koalas.apply_batch(np.add, args=(10,)) A B 0 11 12 1 13 14 2 15 16 >>> (df * -1).koalas.apply_batch(abs) A B 0 1 2 1 3 4 2 5 6 """ # TODO: codes here partially duplicate `DataFrame.apply`. Can we deduplicate? from databricks.koalas.groupby import GroupBy from databricks.koalas.frame import DataFrame from databricks import koalas as ks if not isinstance(func, types.FunctionType): assert callable( func), "the first argument should be a callable function." f = func func = lambda *args, **kwargs: f(*args, **kwargs) spec = inspect.getfullargspec(func) return_sig = spec.annotations.get("return", None) should_infer_schema = return_sig is None should_use_map_in_pandas = LooseVersion(pyspark.__version__) >= "3.0" original_func = func func = lambda o: original_func(o, *args, **kwds) self_applied = DataFrame(self._kdf._internal.resolved_copy) if should_infer_schema: # Here we execute with the first 1000 to get the return type. # If the records were less than 1000, it uses pandas API directly for a shortcut. limit = ks.get_option("compute.shortcut_limit") pdf = self_applied.head(limit + 1)._to_internal_pandas() applied = func(pdf) if not isinstance(applied, pd.DataFrame): raise ValueError( "The given function should return a frame; however, " "the return type was %s." % type(applied)) kdf = ks.DataFrame(applied) if len(pdf) <= limit: return kdf return_schema = kdf._internal.to_internal_spark_frame.schema if should_use_map_in_pandas: output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=True) sdf = self_applied._internal.to_internal_spark_frame.mapInPandas( lambda iterator: map(output_func, iterator), schema=return_schema) else: sdf = GroupBy._spark_group_map_apply( self_applied, func, (F.spark_partition_id(), ), return_schema, retain_index=True) # If schema is inferred, we can restore indexes too. internal = kdf._internal.with_new_sdf(sdf) else: return_type = infer_return_type(original_func) return_schema = return_type.tpe is_return_dataframe = isinstance(return_type, DataFrameType) if not is_return_dataframe: raise TypeError( "The given function should specify a frame as its type " "hints; however, the return type was %s." % return_sig) if should_use_map_in_pandas: output_func = GroupBy._make_pandas_df_builder_func( self_applied, func, return_schema, retain_index=False) sdf = self_applied._internal.to_internal_spark_frame.mapInPandas( lambda iterator: map(output_func, iterator), schema=return_schema) else: sdf = GroupBy._spark_group_map_apply( self_applied, func, (F.spark_partition_id(), ), return_schema, retain_index=False) # Otherwise, it loses index. internal = InternalFrame(spark_frame=sdf, index_map=None) return DataFrame(internal)