def load_peptide_set(peptide_length=[8, 9, 10, 11], nrows=None): peptide_lengths = int_or_seq(peptide_length) lens = "_".join(str(n) for n in peptide_lengths) cache_filename = \ "reference_peptide_set_" + lens + "_nrows_" + str(nrows) + ".pickle.gz" def save_set(src_path, dst_path): string_set = _generate_set(src_path, peptide_lengths, nrows) with GzipFile(dst_path, 'w') as out_file: out_file.write(pickle.dumps(string_set)) return string_set def load_set(path): result = None with GzipFile(path, 'r') as in_file: result = pickle.loads(in_file.read()) return result return fetch_and_transform( transformed_filename=cache_filename, transformer=save_set, loader=load_set, source_filename=FASTA_FILENAME, source_url=FULL_URL, subdir=cache.subdir)
def load_peptide_counts(peptide_length=[8, 9, 10, 11], nrows=None): """ List of all reference peptides encoded in a reference human exome """ peptide_lengths = int_or_seq(peptide_length) lens = "_".join(str(n) for n in peptide_lengths) cache_filename = \ "reference_peptide_counts_" + lens + "_nrows_" + str(nrows) + ".csv" def save_counts(src_path, dst_path): counts = _generate_counts(src_path, peptide_lengths, nrows) print("Saving %s" % dst_path) counts.to_csv(dst_path) return counts return fetch_and_transform(transformed_filename=cache_filename, transformer=save_counts, loader=pd.read_csv, source_filename=FASTA_FILENAME, source_url=FULL_URL, subdir=cache.subdir)
def load_peptide_counts(peptide_length=[8, 9, 10, 11], nrows=None): """ List of all reference peptides encoded in a reference human exome """ peptide_lengths = int_or_seq(peptide_length) lens = "_".join(str(n) for n in peptide_lengths) cache_filename = \ "reference_peptide_counts_" + lens + "_nrows_" + str(nrows) + ".csv" def save_counts(src_path, dst_path): counts = _generate_counts(src_path, peptide_lengths, nrows) print("Saving %s" % dst_path) counts.to_csv(dst_path) return counts return fetch_and_transform( transformed_filename=cache_filename, transformer=save_counts, loader=pd.read_csv, source_filename=FASTA_FILENAME, source_url=FULL_URL, subdir=cache.subdir)
def load_peptide_set(peptide_length=[8, 9, 10, 11], nrows=None): peptide_lengths = int_or_seq(peptide_length) lens = "_".join(str(n) for n in peptide_lengths) cache_filename = \ "reference_peptide_set_" + lens + "_nrows_" + str(nrows) + ".pickle.gz" def save_set(src_path, dst_path): string_set = _generate_set(src_path, peptide_lengths, nrows) with GzipFile(dst_path, 'w') as out_file: out_file.write(cPickle.dumps(string_set)) return string_set def load_set(path): result = None with GzipFile(path, 'r') as in_file: result = cPickle.loads(in_file.read()) return result return fetch_and_transform(transformed_filename=cache_filename, transformer=save_set, loader=load_set, source_filename=FASTA_FILENAME, source_url=FULL_URL, subdir=cache.subdir)