Exemple #1
0
def stochastic_oscillator(company,
                          window=14,
                          begin="2000-01-03",
                          end=datetime.date.today()):
    closes = dfr.get_data([company], begin, end)
    lows = dfr.get_data([company], begin, end, "low")
    highs = dfr.get_data([company], begin, end, "high")
    oscillators = closes
    for index in range(len(closes[company])):
        high = closes[company][index]
        low = closes[company][index]
        for item in lows["low"][(index - window):index]:
            if item < low:
                low = item
        for item in highs["high"][(index - window):index]:
            if item > high:
                high = item
        total = 100 * (closes[company][index] - low) / (high - low)

        if index > window:
            oscillators[company][index] = total
        else:
            oscillators[company][index] = None
    oscillators.columns = ["Stochastic Oscillator"]
    return oscillators
def comulative_returns():
    dates = pd.date_range('2012-01-01', '2012-12-31')
    df = get_data([SPY, XOM], dates)
    # plot_data(df)
    # print df
    cr = compute_comulative_returns(df)
    plot_data(cr, title="Comulative returns")
Exemple #3
0
def inputs(company, begin="2000-01-03", end=datetime.date.today()):
    df = dataframe.get_data([company])
    boll = indicators.bollinger_differential(company)
    rsi = indicators.RSI(company)
    oscillator = indicators.stochastic_oscillator(company)
    input_set = df.join(boll.join(rsi))
    return input_set[20:]
def daily_returns():
    dates = pd.date_range('2012-07-01', '2012-07-31')
    df = get_data([SPY, XOM], dates)
    # plot_data(df)
    # print df
    daily_returns = compute_daily_returns(df)
    plot_data(daily_returns, title="Daily returns")
Exemple #5
0
def bollinger_differential(company,
                           window=20,
                           begin="2000-01-03",
                           end=datetime.date.today()):
    df = dfr.get_data([company], begin, end)
    mean = pd.rolling_mean(df[company], window=window)
    stdev = pd.rolling_std(df[company], window=window)
    boll = ((mean - df[company]) / stdev).to_frame()
    boll.columns = ["Bollinger Differential"]
    return boll
def test_run():
    dates = pd.date_range('2012-01-01', '2012-12-31')
    df = get_data([SPY], dates)

    ax = df[SPY].plot(title="SPY rolling mean", label=SPY)
    # Plot SPY data, retain matplotlib axis object
    rm_SPY = pd.rolling_mean(df[SPY], window=20)
    rm_SPY.plot(label="Rolling mean", ax=ax)

    ax.set_xlabel("Date")
    ax.set_ylabel("Date")
    ax.legend(loc="upper left")
    plt.show()
def test_run():
    dates = pd.date_range('2010-01-01', '2012-12-31')
    symbols = [consts.SPY, consts.XOM, consts.GOOG, consts.GLD]
    df = dataframe.get_data(symbols, dates)
    dataframe.plot_data(df)

    # Mean is the average of set of values
    # Median value in the middle when they are all sorted
    # Standard deviation (std) square root of variants
    # It is a measure of deviation of central value which is mean.
    # Higher number means that stock has varied over
    # time more then other stocks.

    # Global Statistics: mean, median, std, sum, prod, mode, etc....

    print df.mean()
def compute_bollinger_bands():
    dates = pd.date_range('2012-01-01', '2012-12-31')
    df = get_data([SPY], dates)
    rm_spy = get_rolling_mean(df[SPY])
    rstd_spy = get_rolling_std(df[SPY])
    upper_band, lower_band = get_bollinger_bands(rm_spy, rstd_spy)

    ax = df[SPY].plot(title="SPY rolling mean", label=SPY)
    rm_spy.plot(label="Rolling mean", ax=ax)
    upper_band.plot(label="upper band", ax=ax)
    lower_band.plot(label="lower band", ax=ax)

    ax.set_xlabel("Date")
    ax.set_ylabel("Date")
    ax.legend(loc="upper left")
    plt.show()
Exemple #9
0
def RSI(company, window=14, begin="2000-01-03", end=datetime.date.today()):
    df = dfr.get_data([company], begin, end)
    change = df[1:] - df[:-1].values
    rsi = df
    for item in range(len(df[company])):
        gains = 0
        losses = 0
        for index in change[company][item - window:item]:
            if index > 0:
                gains += item
            elif index < 0:
                losses += item
        if losses == 0:
            rsi[company][item] = None
        else:
            rsi[company][item] = 100 - (100 / (1 + (gains / losses)))
    rsi.columns = ["RSI"]
    return rsi
def test_run():
    dates = pd.date_range("2009-01-01", "2012-12-31")
    df = get_data([SPY, XOM, GLD], dates)

    daily_returns = compute_daily_returns(df)
    spy_daily_returns = daily_returns[SPY]
    xom_daily_returns = daily_returns[XOM]
    daily_returns.plot(kind="scatter", x=SPY, y=XOM)
    beta_XOM, alpha_XOM = np.polyfit(spy_daily_returns, xom_daily_returns, 1)
    plt.plot(spy_daily_returns, beta_XOM * spy_daily_returns + alpha_XOM, "-", color="r")
    plt.show()

    gld_daily_returns = daily_returns[GLD]
    daily_returns.plot(kind="scatter", x=SPY, y=GLD)
    beta_GLD, alpha_GLD = np.polyfit(spy_daily_returns, gld_daily_returns, 1)
    plt.plot(spy_daily_returns, beta_GLD * spy_daily_returns + alpha_GLD, "-", color="r")
    plt.show()

    print daily_returns.corr(method="pearson")
def test_run():
    dates = pd.date_range("2009-01-01", "2012-12-31")
    df = get_data([SPY, XOM], dates)

    daily_returns = compute_daily_returns(df)
    # plot_data(daily_returns, title="Daily returns")

    daily_returns[SPY].hist(bins=20, label=SPY)
    daily_returns[XOM].hist(bins=20, label=XOM)
    plt.legend(loc="upper right")

    mean = daily_returns[SPY].mean()
    print "mean= ", mean

    std = daily_returns[SPY].std()
    print "std= ", std

    # plt.axvline(mean, color="w", linestyle="dashed", linewidth=2)
    # plt.axvline(std, color="r", linestyle="dashed", linewidth=2)
    # plt.axvline(-std, color="r", linestyle="dashed", linewidth=2)
    plt.show()

    print daily_returns.kurtosis()
Exemple #12
0
def tomorrow_close(company, begin="2000-01-03", end=datetime.date.today()):
    df = dataframe.get_data([company])
    df.columns = ["Tomorrow's Close"]
    return df.shift(-1)[20:]