def load_tfd_fold(fold=0): """ Return train, val, test data for the particular fold. """ # note that the training set used here is the 'unlabeled' set in TFD x_train, _, _ = tfd.load_proper_fold(fold, 'unlabeled', scale=True) x_val, _, _ = tfd.load_proper_fold(fold, 'val', scale=True) x_test, _, _ = tfd.load_proper_fold(fold, 'test', scale=True) imsz = np.prod(x_train.shape[1:]) return x_train.reshape(x_train.shape[0], imsz), \ x_val.reshape(x_val.shape[0], imsz), \ x_test.reshape(x_test.shape[0], imsz)
def load_tfd_all_folds(set_name='val', n_folds=5): x = [] for i_fold in range(n_folds): #xx, _, _ = tfd.load_fold(i_fold, set_name, scale=True) xx, _, _ = tfd.load_proper_fold(i_fold, set_name, scale=True) x.append(xx.reshape(xx.shape[0], np.prod(xx.shape[1:]))) return x
def load_train_data(dataset='mnist'): if dataset == 'mnist': train_data, _, _ = mnistio.load_data() elif dataset == 'tfd': train_data, _, _ = tfd.load_proper_fold(0, 'unlabeled', scale=True) train_data = train_data.reshape(train_data.shape[0], np.prod(train_data.shape[1:])) return train_data