Exemple #1
0
def test_address_dtype_generation():
    study = StudyDefinition(
        # This line defines the study population
        population=patients.all(),
        rural_urban=patients.address_as_of(
            "2020-02-01", returning="rural_urban_classification"
        ),
    )
    result = _converters_to_names(study.pandas_csv_args)
    assert result == {
        "dtype": {"rural_urban": "category"},
        "parse_dates": [],
        "date_col_for": {},
        "converters": {},
    }
Exemple #2
0
                 "STP7": 0.1,
                 "STP8": 0.1,
                 "STP9": 0.1,
                 "STP10": 0.1,
             }
         },
     },
 ),
 imd=patients.address_as_of(
     "2020-02-29",
     returning="index_of_multiple_deprivation",
     round_to_nearest=100,
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "100": 0.1,
                 "200": 0.2,
                 "300": 0.7
             }
         },
     },
 ),
 ethnicity=patients.with_these_clinical_events(
     ethnicity_codes,
     returning="category",
     find_last_match_in_period=True,
     include_date_of_match=True,
     return_expectations={
         "category": {
             "ratios": {
        on_or_before="2020-06-01",
        returning="date_of_death",
        include_month=True,
        include_day=True,
    ),

    # The rest of the lines define the covariates with associated GitHub issues
    # https://github.com/ebmdatalab/tpp-sql-notebook/issues/33
    age=patients.age_as_of("2020-02-01"),

    # https://github.com/ebmdatalab/tpp-sql-notebook/issues/46
    sex=patients.sex(),

    # https://github.com/ebmdatalab/tpp-sql-notebook/issues/52
    imd=patients.address_as_of(
        "2020-02-01", returning="index_of_multiple_deprivation", round_to_nearest=100
    ),

    # https://github.com/ebmdatalab/tpp-sql-notebook/issues/37
    rural_urban=patients.address_as_of(
        "2020-02-01", returning="rural_urban_classification"
    ),

    # https://github.com/ebmdatalab/tpp-sql-notebook/issues/54
    stp=patients.registered_practice_as_of("2020-02-01", returning="stp_code"),

    # region - one of NHS England 9 regions
    region=patients.registered_practice_as_of("2020-02-01", returning="nhse_region_name"),

    # https://github.com/ebmdatalab/tpp-sql-notebook/issues/10
    bmi=patients.most_recent_bmi(
Exemple #4
0
             "ratios": {
                 "MSOA1": 0.5,
                 "MSOA2": 0.5
             }
         },
     },
 ),
 # https://github.com/ebmdatalab/tpp-sql-notebook/issues/52
 imd=patients.address_as_of(
     "2020-02-01",
     returning="index_of_multiple_deprivation",
     round_to_nearest=100,
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "100": 0.1,
                 "200": 0.2,
                 "300": 0.7
             }
         },
     },
 ),
 rural_urban=patients.address_as_of(
     "2020-02-01",
     returning="rural_urban_classification",
     return_expectations={
         "rate": "universal",
         "category": {
             "ratios": {
                 "rural": 0.1,
def test_patients_address_as_of():
    session = make_session()
    patient = Patient()
    patient.Addresses.append(
        PatientAddress(
            StartDate="1990-01-01",
            EndDate="2018-01-01",
            ImdRankRounded=100,
            RuralUrbanClassificationCode=1,
        )
    )
    # We deliberately create overlapping address periods here to check that we
    # handle these correctly
    patient.Addresses.append(
        PatientAddress(
            StartDate="2018-01-01",
            EndDate="2020-02-01",
            ImdRankRounded=200,
            RuralUrbanClassificationCode=1,
        )
    )
    patient.Addresses.append(
        PatientAddress(
            StartDate="2019-01-01",
            EndDate="2022-01-01",
            ImdRankRounded=300,
            RuralUrbanClassificationCode=2,
        )
    )
    patient.Addresses.append(
        PatientAddress(
            StartDate="2022-01-01",
            EndDate="9999-12-31",
            ImdRankRounded=500,
            RuralUrbanClassificationCode=3,
        )
    )
    patient_no_address = Patient()
    patient_only_old_address = Patient()
    patient_only_old_address.Addresses.append(
        PatientAddress(
            StartDate="2010-01-01",
            EndDate="2015-01-01",
            ImdRankRounded=100,
            RuralUrbanClassificationCode=1,
        )
    )
    session.add_all([patient, patient_no_address, patient_only_old_address])
    session.commit()
    study = StudyDefinition(
        population=patients.all(),
        imd=patients.address_as_of(
            "2020-01-01",
            returning="index_of_multiple_deprivation",
            round_to_nearest=100,
        ),
        rural_urban=patients.address_as_of(
            "2020-01-01", returning="rural_urban_classification"
        ),
    )
    results = study.to_dicts()
    assert [i["imd"] for i in results] == ["300", "0", "0"]
    assert [i["rural_urban"] for i in results] == ["2", "0", "0"]