def test_load_celebA(): print 'testing data loader' BATCH_SIZE = 5 trainDataset = CELEBA(root=ROOT, train=True, transform=transforms.ToTensor()) trainLoader = torch.utils.data.DataLoader(trainDataset, batch_size=BATCH_SIZE, shuffle=True) (x, y) = iter(trainLoader).next() assert x.size() == (5, 3, 64, 64) assert y.size() == (5, )
f.close() return svm if __name__ == '__main__': opts = get_args() #Load data print 'Prepare data loaders...' transform = transforms.Compose( [transforms.ToTensor(), transforms.RandomHorizontalFlip()]) trainDataset = CELEBA(root=opts.root, train=True, transform=transforms.ToTensor()) trainLoader = torch.utils.data.DataLoader(trainDataset, batch_size=opts.batchSize, shuffle=True) testDataset = CELEBA(root=opts.root, train=False, transform=transforms.ToTensor()) testLoader = torch.utils.data.DataLoader(testDataset, batch_size=opts.batchSize, shuffle=False) print 'Data loaders ready.' #Create model dae = DAE(nz=opts.nz,
print 'Outputs will be saved to:', exDir save_input_args(exDir, opts) # Load data (glasses and male labels) IM_SIZE = opts.imSize print 'Prepare data loader...' transform = transforms.Compose([ transforms.ToPILImage(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) testDataset = CELEBA( root=opts.root, train=False, labels=opts.labels, transform=transform, Ntest=1000 ) #most models trained with Ntest=1000, but using 100 to prevent memory errors testLoader = torch.utils.data.DataLoader(testDataset, batch_size=opts.batchSize, shuffle=False) print 'Data loader ready.' #Load model gen = GEN(imSize=IM_SIZE, nz=opts.nz, fSize=opts.fSize) if gen.useCUDA: torch.cuda.set_device(opts.gpuNo) gen.cuda() gen.load_params(opts.exDir, gpuNo=opts.gpuNo) gen.eval()
####### Save params ####### gen.save_params(exDir) dis.save_params(exDir) return gen, dis if __name__ == '__main__': opts = get_args() ####### Data set ####### print 'Prepare data loaders...' transform = transforms.Compose([transforms.ToPILImage(), transforms.RandomHorizontalFlip(),\ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) trainDataset = CELEBA(root=opts.root, train=True, transform=transform) trainLoader = torch.utils.data.DataLoader(trainDataset, batch_size=opts.batchSize, shuffle=True) transform = transforms.Compose([ transforms.ToPILImage(), \ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]) testDataset = CELEBA(root=opts.root, train=False, transform=transform) testLoader = torch.utils.data.DataLoader(testDataset, batch_size=opts.batchSize, shuffle=False) print 'Data loaders ready.' ###### Create model ##### IM_SIZE = 64