Exemple #1
0
def main_train(model, stage):
    # setting tensorboard
    tensorboard_path = 'runs/{}_{}'.format(stage, args.saved_model_name)
    tb_writer = TensorboardWriter(tensorboard_path)

    # get one testing image, used to visualize result in each eopch
    testing_rgb, testing_lidar, testing_mask = tb_writer.get_testing_img()
    testing_rgb, testing_lidar, testing_mask = testing_rgb.to(
        DEVICE), testing_lidar.to(DEVICE), testing_mask.to(DEVICE)

    # setting early stop, if result doen't improve more than PATIENCE times, stop iteration
    early_stop = EarlyStop(patience=10, mode='min')

    # get data loader
    loader = {'train': get_loader('train', num_data=args.num_data), \
              'val': get_loader('val', shuffle=False, num_data=1000)}

    for epoch in range(args.epoch):
        saved_model_path = os.path.join(
            SAVED_MODEL_PATH, "{}_{}_e{}".format(args.saved_model_name, stage,
                                                 epoch + 1))
        train_losses, val_losses = train_val(model, loader, epoch, DEVICE,
                                             stage)

        # predict dense and surface normal using testing image and write them to tensorboard
        predicted_dense, pred_surface_normal = get_depth_and_normal(
            model, testing_rgb, testing_lidar, testing_mask)
        tb_writer.tensorboard_write(epoch, train_losses, val_losses,
                                    predicted_dense, pred_surface_normal)

        if early_stop.stop(val_losses[0], model, epoch + 1, saved_model_path):
            break

    tb_writer.close()
Exemple #2
0
def main(config):
    if config.checkpoint_dir is None:
        config.checkpoint_dir = 'checkpoints'

    if not os.path.exists(
            os.path.join(config.checkpoint_dir, config.style_image_name)):
        os.makedirs(
            os.path.join(config.checkpoint_dir, config.style_image_name))

    if not os.path.exists(
            os.path.join(config.sample_dir, config.style_image_name)):
        os.makedirs(os.path.join(config.sample_dir, config.style_image_name))

    if not os.path.exists(config.data_path) or not os.listdir(
            config.data_path):
        download_dataset(config)

    print(f"photo to {config.style_dir} style transfer using cnn")

    data_loader, val_data_loader = get_loader(config.data_path,
                                              config.image_size,
                                              config.batch_size,
                                              config.sample_batch_size)
    trainer = Trainer(config, data_loader)
    trainer.train()

    tester = Tester(config, val_data_loader)
    tester.test()
def main(config):
    cudnn.benchmark = True
    data_loader = get_loader(config.model, config.image_path,
                             config.metadata_path, config.mode,
                             config.batch_size, config.shuffle)

    solver = Solver(data_loader, config)
    if config.mode == 'train':
        solver.train()
    elif config.mode == 'test':
        solver.test()
def main():
    # initialize tensorboard for visualization training progress
    tensorboard_path = 'runs/{}'.format(args.saved_model_name)
    tb_writer = TensorboardWriter(tensorboard_path)

    # set the early stop
    early_stop = EarlyStop(patience=5, mode='max')

    # get train and val dataloader
    train_loader = get_loader('train',
                              batch_size=32,
                              shuffle=True,
                              num_data=-1)
    val_loader = get_loader('val', batch_size=32, shuffle=False, num_data=-1)
    loader = dict(train=train_loader, val=val_loader)

    # choose the classifier
    clf = resnet18(pretrained=False, num_classes=1, in_channels=2).to(DEVICE)
    #clf = vgg11_bn(pretrained=False, num_classes=1).to(DEVICE)
    #clf = vgg11(pretrained=False, num_classes=1).to(DEVICE)

    # set criterion and optimizer
    criterion = nn.BCELoss(reduction='mean')
    optimizer = optim.Adam(clf.parameters(), lr=1e-4)

    # training
    for epoch in range(1, 100):
        train_loss, val_loss, train_acc, val_acc = train_val(
            clf, criterion, optimizer, loader, epoch, DEVICE)
        tb_writer.tensorboard_write(epoch, train_loss, val_loss, train_acc,
                                    val_acc)

        saved_model_path = os.path.join("saved_model",
                                        "{}".format(args.saved_model_name))
        if early_stop.stop(val_acc, clf, epoch, saved_model_path):
            break

    tb_writer.close()
Exemple #5
0
def main(config):
    if not os.path.exists(config.checkpoint_dir):
        os.makedirs(config.checkpoint_dir)

    print('[*] Load Dataset')
    train_loader, test_loader = get_loader(config.dataset, config.image_size,
                                           config.batch_size)

    print('[*] Train')
    trainer = Trainer(config, train_loader)
    trainer.train()

    print('[*] Test')
    tester = Tester(config, test_loader)
    tester.test()
Exemple #6
0
def main(config):
    # make directory not existed
    if config.checkpoint_dir is None:
        config.checkpoint_dir = 'checkpoints'
    if not os.path.exists(config.checkpoint_dir):
        os.makedirs(config.checkpoint_dir)
    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)

    print(f"ESRGAN start")

    data_loader = get_loader(config.image_size, config.scale_factor,
                             config.batch_size, config.sample_batch_size)
    trainer = Trainer(config, data_loader)
    trainer.train()
Exemple #7
0
def main(config):
    if config.checkpoint_dir is None:
        config.checkpoint_dir = 'checkpoints'

    if not os.path.exists(config.checkpoint_dir):
        os.makedirs(config.checkpoint_dir)

    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)

    print(f"{config.style} CycleGAN")

    from_style = config.style.split('2')[0]
    to_style = config.style.split('2')[1]

    data_loader = get_loader(from_style, to_style, config)
    trainer = Trainer(config, data_loader)
    trainer.train()
def main(config):
    if config.checkpoint_dir is None:
        config.checkpoint_dir = 'checkpoints'

    if not os.path.exists(config.checkpoint_dir):
        os.makedirs(config.checkpoint_dir)

    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)

    print(f"{config.from_style} to {config.to_style} CycleGAN")

    data_loader, val_data_loader = get_loader(config.from_style,
                                              config.to_style, config)
    trainer = Trainer(config, data_loader)
    trainer.train()

    tester = Tester(config, val_data_loader)
    tester.test()
def main(config):
    if config.checkpoint_dir is None:
        config.checkpoint_dir = 'checkpoints'

    if not os.path.exists(config.checkpoint_dir):
        os.makedirs(config.checkpoint_dir)

    if not os.path.exists(config.sample_dir):
        os.makedirs(config.sample_dir)

    print(f"photo to {config.style_dir} style transfer using cnn")

    data_loader, val_data_loader = get_loader(config.from_style,
                                              config.to_style,
                                              config.batch_size,
                                              config.sample_batch_size)
    trainer = Trainer(config, data_loader)
    trainer.train()

    tester = Tester(config, val_data_loader)
    tester.test()
    def get_testing_img(self):
        """Load one example for visualizing result in each epoch.
           Use tensorboard to visualize this example

        Returns:
        rgb: rgb input of the model (1 x c x w x h)
        lidar: lidar input of the model
        mask: mask input of the model
        """
        loader = get_loader('val', shuffle=False, num_data=1, crop=False)
        for rgb, lidar, mask, gt_depth, gt_surface_normal in loader:
            self.writer.add_image('RGB input', rgb[0] / 255.0, 1)
            self.writer.add_image('lidar input', lidar[0], 1)
            self.writer.add_image('GroundTruth depth',
                                  normal_to_0_1(gt_depth[0]), 1)

            self.gt_mask = torch.tensor(
                np.where(gt_depth.numpy() > 0.0, 1.0, 0.0))  # b x 1 x w x h

            #self.gt_normal_mask = gt_normal_mask # b x 1 x w x h

            return rgb, lidar, mask, gt_surface_normal