Exemple #1
0
    def get_data_loaders(self):
        root_dir = self.config['dataset_root_dir']
        # get labeled dataset
        labeled_set = self.config['labeled_set']
        self.train_lab_dataset = PickleDataset(os.path.join(
            root_dir, f'{labeled_set}.pkl'),
                                               config=self.config,
                                               sort=True)
        self.train_lab_loader = get_data_loader(
            self.train_lab_dataset,
            batch_size=self.config['batch_size'],
            shuffle=self.config['shuffle'],
            drop_last=False)

        # get unlabeled dataset
        unlabeled_set = self.config['unlabeled_set']
        self.train_unlab_dataset = PickleDataset(os.path.join(
            root_dir, f'{unlabeled_set}.pkl'),
                                                 config=self.config,
                                                 sort=True)
        self.train_unlab_loader = get_data_loader(
            self.train_unlab_dataset,
            batch_size=self.config['batch_size'],
            shuffle=self.config['shuffle'],
            drop_last=False,
            speech_only=True)

        # get dev dataset
        clean_dev_set = self.config['clean_dev_set']
        # do not sort dev set
        self.clean_dev_dataset = PickleDataset(os.path.join(
            root_dir, f'{clean_dev_set}.pkl'),
                                               sort=True)
        self.clean_dev_loader = get_data_loader(
            self.clean_dev_dataset,
            batch_size=self.config['batch_size'] // 2,
            shuffle=False,
            drop_last=False)
        # get dev dataset
        noisy_dev_set = self.config['noisy_dev_set']
        # do not sort dev set
        self.noisy_dev_dataset = PickleDataset(os.path.join(
            root_dir, f'{noisy_dev_set}.pkl'),
                                               sort=True)
        self.noisy_dev_loader = get_data_loader(
            self.noisy_dev_dataset,
            batch_size=self.config['batch_size'] // 2,
            shuffle=False,
            drop_last=False)
        return
Exemple #2
0
def train(args):
    full_data = get_data_loader(args)
    VAE_human = VAE(512).to(device)
    VAE_cartoon = VAE(512).to(device)
    optimiser_human = optim.Adam(VAE_human.parameters(), lr=0.0002)
    optimiser_cartoon = optim.Adam(VAE_cartoon.parameters(), lr=0.0002)
    VAE_human.train()
    VAE_cartoon.train()
    print("Start Training....")
    for epoch in trange(args.num_epochs):
        total_VAE_human_loss = 0.0
        total_VAE_cartoon_loss = 0.0
        total_data = 0
        for batch_num, data in enumerate(full_data):
            human, cartoon = data[0].to(device), data[1].to(
                device)  # x is cartoon, y is human
            total_data += human.shape[0]
            total_VAE_human_loss += train_VAE_1_step(VAE_human, VAE_cartoon,
                                                     optimiser_human, human)
            total_VAE_cartoon_loss += train_VAE_1_step(VAE_cartoon, VAE_human,
                                                       optimiser_cartoon,
                                                       cartoon)
        avg_VAE_human_loss = total_VAE_human_loss / total_data
        avg_VAE_cartoon_loss = total_VAE_cartoon_loss / total_data
        print("Avg VAE Cartoon Loss: {}".format(avg_VAE_cartoon_loss))
        print("Avg VAE Human Loss: {}".format(avg_VAE_human_loss))
Exemple #3
0
def main(opt):
    logger.info('Loading model: %s', opt.model_file)

    checkpoint = torch.load(opt.model_file)

    checkpoint_opt = checkpoint['opt']

    # Update/Overwrite some test options like batch size, location to metadata
    # file
    vars(checkpoint_opt).update(vars(opt))

    logger.info('Updated input arguments: %s',
                json.dumps(vars(checkpoint_opt), sort_keys=True, indent=4))

    logger.info('Building model...')
    model = get_model(checkpoint_opt, num_classes=checkpoint_opt.num_classes)

    test_loader = get_data_loader(checkpoint_opt,
                                  training=False,
                                  return_org_image=True,
                                  data_list=opt.test_data_list)

    logger.info('Loading model parameters...')
    model = DataParallelModel(model)
    model.load_state_dict(checkpoint['model'])

    if torch.cuda.is_available():
        model.cuda()

    logger.info('Start testing...')

    test(checkpoint_opt, model, test_loader)
def test(args, device):
    full_data = get_data_loader(args)

    if args.model_type == "CNN":
        from CNN import CNN
        model = CNN(args).to(device)
    elif args.model_type == "MLP":
        from MLP import MLP
        model = MLP(args).to(device)
    elif args.model_type == "LSTM":
        from LSTM import LSTM
        model = LSTM(args).to(device)

    optimiser = optim.Adam(
        model.parameters(), lr=args.learning_rate)

    state = torch.load(args.model_path, map_location=device)
    model.load_state_dict(state['model'])
    optimiser.load_state_dict(state['optimiser'])

    total_difference = 0
    n = 0

    for batch_num, data in enumerate(full_data):
        x, y = data[0].float().to(device), data[1].float().to(device)
        num_of_predictions = x.shape[0]
        pred = model(x)
        pred = pred.reshape(y.shape)
        total_difference += sum((abs(pred - y)/y) * 100)
        n += num_of_predictions

    return total_difference/n
Exemple #5
0
def main_global(args):
    data_dir = args.data_dir
    params = {'batch_size': args.batch, 'shuffle': False}
    if args.bert_fts:
        type_dir = "all_bertemb/"
    else:
        type_dir = "all/"
    data_dir_back = ""
    if (args.trainon == 'bothway') or (args.trainon == 'bothWselect'):
        if args.bert_fts:
            data_dir_back = args.data_dir + "all_backward_bertemb/"
        else:
            data_dir_back = args.data_dir + "all_backward/"
    train_data = EventDataset(args.data_dir + type_dir, "train",
                              args.glove2vocab, data_dir_back, args.bert_fts)
    print('train_data: %s in total' % len(train_data))
    train_generator = get_data_loader(train_data, **params)
    dev_data = EventDataset(args.data_dir + type_dir, "dev", args.glove2vocab,
                            data_dir_back, args.bert_fts)
    print('dev_data: %s in total' % len(dev_data))
    dev_generator = get_data_loader(dev_data, **params)

    if args.bert_fts:
        data_dir_back = args.data_dir + "all_backward_bertemb/"
    else:
        data_dir_back = args.data_dir + "all_backward/"
    test_data = EventDataset(args.data_dir + type_dir, "test",
                             args.glove2vocab, data_dir_back, args.bert_fts)
    test_generator = get_data_loader(test_data, **params)

    s_time = time.time()
    models = [NNClassifier()]
    score = 0
    for model in models:
        dev_f1 = model.train_epoch(train_generator, dev_generator, args)
        print('total time escape', time.time() - s_time)
        evaluator = Evaluator(model)
        #print(evaluator.evaluate(test_generator, args))
        score = evaluator.get_score(test_generator, args)
        #evaluator.collect_result(test_generator, args)
        print('final test f1: %.4f' % (score))
    return float(dev_f1), float(score)
    def parallel_cv(self, split, emb=np.array([]), pos_emb=[], args=None):
        params = {'batch_size': args.batch, 'shuffle': False}
        if args.bert_fts:
            type_dir = "cv_bertemb"
        else:
            type_dir = "cv_shuffle" if args.cv_shuffle else 'cv'

        backward_dir = ""
        if (args.trainon == 'bothway') or (args.trainon == 'bothWselect'):
            if args.bert_fts:
                backward_dir = "%scv_backward_bertemb/fold%s/" % (
                    args.data_dir, split)
            else:
                backward_dir = "%scv_backward/fold%s/" % (args.data_dir, split)

        train_data = EventDataset(
            args.data_dir + '%s/fold%s/' % (type_dir, split), "train",
            args.glove2vocab, backward_dir, args.bert_fts)
        train_generator = get_data_loader(train_data, **params)
        dev_data = EventDataset(
            args.data_dir + '%s/fold%s/' % (type_dir, split), "dev",
            args.glove2vocab, backward_dir, args.bert_fts)
        dev_generator = get_data_loader(dev_data, **params)

        seeds = [0, 10, 20]
        accumu_f1 = 0.
        accumu_epoch = 0.
        for seed in seeds:
            exec("args.%s=%s" % ('seed', seed))
            f1, epoch = self._train(train_generator,
                                    dev_generator,
                                    emb,
                                    pos_emb,
                                    args,
                                    in_cv=True)
            accumu_f1 += f1
            accumu_epoch += epoch
        avg_f1 = accumu_f1 / float(len(seeds))
        avg_epoch = accumu_epoch / float(len(seeds))

        return avg_f1, avg_epoch
    def __init__(self, args):
        super(Trainer, self).__init__()
        self.epoch = args.epoch
        self.batch_size = args.batch_size
        self.data_dir = args.data_dir

        self.save_dir = args.save_dir
        self.result_dir = args.result_dir
        self.log_dir = args.log_dir
        self.gpu_mode = args.gpu_mode
        self.verbose = args.verbose

        if args.model == 'fcn16s':
            self.model = FCN16s()
        elif args.model == 'fcn32s':
            self.model = FCN32s()
        elif args.model == 'fcn8s':
            self.model = FCN8s()
        elif args.model == 'pspnet':
            self.model = PSPnet()
        else:
            print("No this model type")
            exit(-1)
        if self.gpu_mode:
            self.model = self.model.cuda()
        self.parameter = self.model.parameters()
        self.optimizer = optim.Adam(self.parameter, lr=args.learning_rate)
        self.scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer,
                                                          gamma=0.5)

        self.train_dataloader = get_data_loader(self.data_dir,
                                                self.batch_size,
                                                split='train')
        self.test_dataloader = get_data_loader(self.data_dir, 1, split='val')

        # experiment_id = args.model + time.strftime('%m%d%H%m')
        # self.writer = SummaryWriter(log_dir=self.log_dir + '/tboard_' + experiment_id)
        self.loss = FocalLoss(gamma=1.25)

        if args.pretrain != '':
            self._load_pretrain(args.pretrain)
Exemple #8
0
def main(opt):
    logger.info('Loading model: %s', opt.model_file)

    checkpoint = torch.load(opt.model_file)

    checkpoint_opt = checkpoint['opt']

    # Load model location
    model = LaneNet(cnn_type=checkpoint_opt.cnn_type)
    model = DataParallelModel(model)

    # Update/Overwrite some test options like batch size, location to metadata
    # file
    vars(checkpoint_opt).update(vars(opt))

    test_loader = get_data_loader(checkpoint_opt,
                                  split='test',
                                  return_org_image=True)

    logger.info('Building model...')
    model.load_state_dict(checkpoint['model'])

    if torch.cuda.is_available():
        model = model.cuda()

    postprocessor = PostProcessor()
    clustering = LaneClustering()

    logger.info('Start testing...')

    if opt.loader_type == 'tusimpletest':
        x_lanes, _, times, _ = test(model,
                                    test_loader,
                                    postprocessor,
                                    clustering,
                                    genline_method=opt.genline_method)
        output_tuprediction(opt.meta_file, x_lanes, times, opt.output_file)
    if opt.loader_type == 'culanetest':
        x_lanes, y_list, _, image_files = test(
            model,
            test_loader,
            postprocessor,
            clustering,
            genline_method=opt.genline_method)
        output_culaneprediction(opt.output_dir, x_lanes, y_list, image_files)
    if opt.loader_type == 'dirloader':
        visualize(model,
                  test_loader,
                  postprocessor,
                  clustering,
                  show_demo=opt.show_demo,
                  output_dir=opt.output_dir,
                  genline_method=opt.genline_method)
def interpolate(args):
    model, z_dim = build_model(args.model)
    wrapper = Wrapper(args, model, z_dim)

    # load the target and mask
    loader = get_data_loader(args.input)
    criterion = Criterion(args)
    for idx, (image, _) in enumerate(loader):
        save_images(image, 'output/interpolate/%d' % (idx))
        target = image.to(device)
        param = sample_noise(z_dim, device, args.latent, model, from_mean=True)
        param, recon = optimize_para(wrapper, param, target, criterion, args.n_iters)
        save_images(recon, 'output/interpolate/%d_%s_%s' % (idx, args.model, args.latent))
        if idx % 2 == 0:
            src = param
            continue
        dst = param
        image_list = []
        with torch.no_grad():
            # todo: interpolation code
        save_gifs(image_list, 'output/interpolate/%d_%s_%s' % (idx, args.model, args.latent))
        if idx >= 3:
            break
    return


def parse_arg():
    """Creates a parser for command-line arguments.
    """
    parser = argparse.ArgumentParser()
    parser.add_argument('--model', type=str, default='stylegan', choices=['vanilla', 'stylegan'])
    parser.add_argument('--mode', type=str, default='sample', choices=['sample', 'project', 'draw', 'interpolate'])
    parser.add_argument('--latent', type=str, default='z', choices=['z', 'w', 'w+'])
    parser.add_argument('--n_iters', type=int, default=1000, help="number of optimization steps in the image projection")
    parser.add_argument('--perc_wgt', type=float, default=0., help="perc loss lambda")
    parser.add_argument('--input', type=str, default='data/cat/*.png', help="path to the input image")
    return parser.parse_args()


if __name__ == '__main__':
    args = parse_arg()
    if torch.cuda.is_available():
        device = 'cuda'
    else:
        device = 'cpu'
    if args.mode == 'sample':
        sample(args)
    elif args.mode == 'project':
        project(args)
    elif args.mode == 'draw':
        draw(args)
    elif args.mode == 'interpolate':
        interpolate(args)
Exemple #10
0
def draw(args):
    # define and load the pre-trained model
    model, z_dim = build_model(args.model)
    wrapper = Wrapper(args, model, z_dim)

    # load the target and mask
    loader = get_data_loader(args.input, alpha=True)
    criterion = Criterion(args, True)
    for idx, (rgb, mask) in enumerate(loader):
        rgb, mask = rgb.to(device), mask.to(device)
        save_images(rgb, 'output/draw/%d_data' % idx, 1)
        save_images(mask, 'output/draw/%d_mask' % idx, 1)
Exemple #11
0
 def get_z_accuracy_data(self, state_dict=None):
     # this function will collect the representation of the testing dataset,
     # for z_accuracy_test, you need to put the "training data" in the "
     # test_set" config so that able to go further test
     if not state_dict:
         self.load_model(self.config['load_model_path'],
                         self.config['load_optimizer'])
     else:
         self.model.load_state_dict(state_dict)
     # get test dataset
     root_dir = self.config['dataset_root_dir']
     test_set = self.config['test_set']
     test_file_name = self.config['test_file_name']
     test_dataset = PickleDataset(os.path.join(root_dir, f'{test_set}.p'),
                                  config=None,
                                  sort=False)
     test_loader = get_data_loader(test_dataset,
                                   batch_size=self.config['batch_size'],
                                   shuffle=False)
     self.model.eval()
     stored_data = dict()
     for step, data in enumerate(test_loader):
         bos = self.vocab['<BOS>']
         eos = self.vocab['<EOS>']
         pad = self.vocab['<PAD>']
         xs, ilens, ys, ys_in, ys_out, spks, envs, trans = to_gpu(
             data, bos, eos, pad)
         # feed previous
         _, prediction, _, enc_outputs, enc_lens = self.model(
             xs,
             ilens,
             None,
             max_dec_timesteps=self.config['max_dec_timesteps'])
         representations = enc_outputs.cpu().detach()
         speakers = spks.cpu().tolist()
         environments = envs.cpu().tolist()
         for instance in range(enc_outputs.size(0)):
             stored_data[((step * self.config['batch_size']) +
                          instance)] = {
                              'embedding':
                              trim_representation(representations[instance],
                                                  enc_lens[instance]),
                              'speaker':
                              speakers[instance],
                              'env':
                              environments[instance],
                              'transcripts':
                              trans[instance]
                          }
     pickle.dump(stored_data, open(self.config['z_data_path'], 'wb'))
     self.model.train()
     return
Exemple #12
0
def main():
    global args, best_prec1
    args = parser.parse_args()

    # Check the save_dir exists or not
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)

    #Some hard-code setting for fast experiments
    if args.train_dataset == 'cifar10':
        num_classes = 10
    elif args.train_dataset == 'cifar100':
        num_classes = 100
    else:
        print("undefined num_classes")

    if args.arch.startswith('dense'):
        size = args.size_dense
    elif args.arch.startswith('wide'):
        size = args.size_wide
    elif args.arch.startswith('vgg'):
        size = 0
    else:
        raise NotImplementedError

    print(num_classes)

    model = torch.nn.DataParallel(models.__dict__[args.arch](num_classes,
                                                             size))
    model.cuda()

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.evaluate, checkpoint['epoch']))
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))

    cudnn.benchmark = True

    #Get data
    train_loader, val_loader = get_data_loader(args.infer_dataset)
    # define loss function (criterion) and optimizer
    criterionList = get_criterion_list(args.arch)

    validate_and_save(val_loader, model, criterionList, args, num_classes)
Exemple #13
0
    def test(self, state_dict=None):

        # load model
        if not state_dict:
            self.load_model(self.config['load_model_path'],
                            self.config['load_optimizer'])
        else:
            self.model.load_state_dict(state_dict)

        # get test dataset
        root_dir = self.config['dataset_root_dir']
        test_set = self.config['test_set']

        test_dataset = PickleDataset(os.path.join(root_dir, f'{test_set}.pkl'),
                                     config=None,
                                     sort=False)

        test_loader = get_data_loader(test_dataset,
                                      batch_size=1,
                                      shuffle=False,
                                      drop_last=False)

        self.model.eval()
        all_prediction, all_ys = [], []

        for step, data in enumerate(test_loader):

            xs, ilens, ys = to_gpu(data)

            # feed previous
            (_, _, prediction, _), _ = self.model(
                xs,
                ilens,
                ys=None,
                max_dec_timesteps=self.config['max_dec_timesteps'])

            all_prediction = all_prediction + prediction.cpu().numpy().tolist()
            all_ys = all_ys + [y.cpu().numpy().tolist() for y in ys]

        self.model.train()

        cer, prediction_sents, ground_truth_sents = self.ind2sent(
            all_prediction, all_ys)

        with open(f'{test_set}.txt', 'w') as f:
            for p in prediction_sents:
                f.write(f'{p}\n')

        print(f'{test_set}: {len(prediction_sents)} utterances, CER={cer:.4f}')
        return cer
    def get_data_loaders(self):
        root_dir = self.config['dataset_root_dir']
        # get labeled dataset
        labeled_set = self.config['labeled_set']
        self.train_lab_dataset = PickleDataset(os.path.join(
            root_dir, f'{labeled_set}.p'),
                                               config=self.config,
                                               sort=True)
        self.train_lab_loader = get_data_loader(
            self.train_lab_dataset,
            batch_size=self.config['batch_size'],
            shuffle=self.config['shuffle'])

        # get dev dataset
        dev_set = self.config['dev_set']
        # do not sort dev set
        self.dev_dataset = PickleDataset(os.path.join(root_dir,
                                                      f'{dev_set}.p'),
                                         sort=True)
        self.dev_loader = get_data_loader(self.dev_dataset,
                                          batch_size=self.config['batch_size'],
                                          shuffle=False)
        return
def main_local(args):
    data_dir = args.data_dir
    params = {'batch_size': args.batch, 'shuffle': False}
    if args.bert_fts:
        type_dir = "all_bertemb/"
    else:
        type_dir = "all/"
    data_dir_back = ""
    if (args.trainon == 'bothway') or (args.trainon == 'bothWselect'):
        if args.bert_fts:
            data_dir_back = args.data_dir + "all_backward_bertemb/"
        else:
            data_dir_back = args.data_dir + "all_backward/"
    train_data = EventDataset(args.data_dir + type_dir, "train",
                              args.glove2vocab, data_dir_back, args.bert_fts)
    print('total train_data %s samples' % len(train_data))
    train_generator = get_data_loader(train_data, **params)
    dev_data = EventDataset(args.data_dir + type_dir, "dev", args.glove2vocab,
                            data_dir_back, args.bert_fts)
    print('total dev_data %s samples' % len(dev_data))
    dev_generator = get_data_loader(dev_data, **params)

    if args.bert_fts:
        data_dir_back = args.data_dir + "all_backward_bertemb/"
    else:
        data_dir_back = args.data_dir + "all_backward/"
    test_data = EventDataset(args.data_dir + type_dir, "test",
                             args.glove2vocab, data_dir_back, args.bert_fts)
    test_generator = get_data_loader(test_data, **params)

    models = [NNClassifier()]
    for model in models:
        dev_f1 = model.train_epoch(train_generator, dev_generator, args)
        evaluator = Evaluator(model)
        #evaluator.for_analysis(test_generator, args)
        score = evaluator.get_score(test_generator, args)
    return float(dev_f1), float(score)
Exemple #16
0
    def __init__(self, model, conf):
        stuple = get_shape(conf.dataset)
        self.input_shape = (conf.batch_size, stuple[0], stuple[1], stuple[1])
        self.model = model
        if torch.cuda.is_available():
            self.model = self.model.cuda()

        self.opt = conf
        self.default_root = os.getcwd()
        self.sample_path =os.path.join(self.default_root, conf.sample_path)

        if self.opt.mode == 'train' or self.opt.mode == 'mix':
            train_tfs = get_transformer(self.opt.dataset, True, crop_size=self.opt.crop_size,
                                        image_size=self.opt.image_size)
            self.train_dl = get_data_loader(self.opt.dataset, os.path.join(self.default_root, self.opt.root),
                                            self.opt.batch_size, train_tfs, True)

        test_tfs = get_transformer(self.opt.dataset, False, crop_size=None, image_size=self.opt.image_size)
        self.test_dl = get_data_loader(self.opt.dataset, os.path.join(self.default_root, self.opt.root), self.opt.batch_size, test_tfs, False)

        self.criterion = nn.CrossEntropyLoss()
        self.optimizer = Adam(self.model.parameters(), lr=self.opt.lr, betas=(self.opt.beta1, self.opt.beta2))

        self.num_classes = 1000 if self.opt.dataset == 'img_folder' else 10
Exemple #17
0
    def run_one_epoch(self, epoch):
        '''
        Train one epoch of the whole dataset.
        Args:
            - dataset: class Dataset.
            - otuput_probs: if True, model output log probs, in which case we also calculate accuracy
        '''
        self._model.train()
        self.logger.info('=> Training epoch %d' % epoch)
        data_iter = get_data_loader(
            self.dataset,
            "train",
            self.config['Trainer']['train_batch_sz'],
            max_len=self.config['Model']
            ['max_len'],  # upper bound of input sentence length
            max_sample=self.config['Trainer']
            ['total_samples'],  # total number of samples to train
            n_workers=self.config['Trainer']['n_workers'])
        kwargs = self.forward_args()
        losses, accuracies = 0, 0
        for step, (data, data_lens) in enumerate(data_iter):
            self._opt.zero_grad()

            loss, acc, kwargs = self.forward_pass(data, data_lens, kwargs)

            self.logger.debug('loss per batch = %f' % loss)
            losses += loss.detach().item()
            accuracies += acc

            nn.utils.clip_grad_norm_(self._model.parameters(),
                                     2)  # gradient clipping
            loss.backward()

            # debug: print gradients
            grad_of_param = {}
            for name, parameter in self._model.named_parameters():
                grad_of_param[name] = parameter.grad
                #self.logger.debug('gradient of %s: \n%s'%(name, str(parameter.grad)))
            self._opt.step()
        loss_per_epoch = losses / (step + 1)
        acc_per_epoch = accuracies / (step + 1)

        if math.isnan(loss_per_epoch):
            self.logger.error("Get NaN loss for epoch %d-- exiting" % epoch)
            sys.exit(1)

        return loss_per_epoch, acc_per_epoch
Exemple #18
0
def train(configs, args):

    if args.load:
        model = torch.load(args.load)
    else:
        model = importlib.import_module("model.{}".format(args.model))
        model = model.CAE()

    bind_model(model)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    model = nn.DataParallel(model).to(device)

    criterion = nn.BCEWithLogitsLoss().to(device)
    optimizer = optim.Adam(model.parameters(),
               lr=configs['LEARNING_RATE'], weight_decay=configs['WEIGHT_DECAY'])

    train_dataset, val_dataset = get_data_loader(DATASET_PATH, configs['BS'], configs['RATIO'], configs['VMAX'])

    train_size = len(train_dataset)
    val_size = len(val_dataset)

    for epoch in range(int(args.start) if args.start else 0, configs['ITER']):
        avg_loss = 0.0
        avg_eval_loss = 0.0

        for i, data in enumerate(train_dataset):
            loss = train_iter(model, data, criterion, optimizer, args.target, args.input)
            avg_loss += loss
            print('Epoch :', epoch, ', Batch : ', i + 1, '/', train_size, ', ERROR in this minibatch: ', loss)
        
        if epoch % configs['SAVE_EVERY'] == 0 and epoch != 0:
            nsml.save(epoch)

        with torch.no_grad():
            for i, data in enumerate(val_dataset):
                loss = eval_iter(model, data, criterion, args.target, args.input)
                avg_eval_loss += loss
                print('Batch : ', i + 1, '/', val_size, ', Validation ERROR in this minibatch: ', loss)

        print('epoch:', epoch, ' train_loss:', float(avg_loss / train_size))
        # print('epoch:', epoch, ' Average CER:', float(avg_cer/total_batch))
        print('epoch:', epoch, ' Validation_loss:', float(avg_eval_loss / val_size))
Exemple #19
0
def main():
    use_cuda = torch.cuda.is_available() and args.cuda
    device = torch.device('cuda' if use_cuda else 'cpu')
    print('Loading model ...')
    model = Net(device)
    if args.load is not None:
        print('Loading checkpoint ...')
        model.load_state_dict(torch.load(args.load))
    if use_cuda:
        model.cuda()
    print('Loading data ...')
    data_loader = get_data_loader(args.data_root, args.stage, args.batch_size)
    print('Preparation done')
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 betas=(0.9, 0.999))
    criterion = nn.CrossEntropyLoss()
    if args.stage == 'train':
        train(model, data_loader, optimizer, criterion)
Exemple #20
0
def project(args):
    # load images
    loader = get_data_loader(args.input, is_train=False)

    # define and load the pre-trained model
    model, z_dim = build_model(args.model)
    wrapper = Wrapper(args, model, z_dim)
    print('model {} loaded'.format(args.model))
    # todo: implement your criterion here.
    criterion = Criterion(args)
    # project each image
    for idx, (data, _) in enumerate(loader):
        target = data.to(device)
        save_images(data, 'output/project/%d_data' % idx, 1)
        param = sample_noise(z_dim, device, args.latent, model)
        optimize_para(wrapper, param, target, criterion, args.n_iters,
                      'output/project/%d_%s_%s_%g' % (idx, args.model, args.latent, args.perc_wgt))
        if idx >= 0:
            break
def draw(args):
    # define and load the pre-trained model
    model, z_dim = build_model(args.model)
    wrapper = Wrapper(args, model, z_dim)

    # load the target and mask
    loader = get_data_loader(args.input, alpha=True)
    criterion = Criterion(args, apply_mask=True)
    for idx, (rgb, mask) in enumerate(loader):
        rgb, mask = rgb.to(device), mask.to(device)
        save_images(rgb, 'output/draw/%d_data' % idx, 1)
        save_images(mask, 'output/draw/%d_mask' % idx, 1)
        # todo: optimize sketch 2 image
        param = sample_noise(z_dim, device, args.latent, args.model, model)
        optimize_para(
            wrapper, param, (rgb, mask), criterion, args.n_iters,
            'output/draw/%d_%s_%s_%g' %
            (idx, args.model, args.latent, args.perc_wgt))
        if idx >= 0:
            break
Exemple #22
0
def run_eval(config):

  val_meta = read_meta(data_path=config['data_dir'], meta_type='valid')

  cat = 'all'
  if 'cat' in config:
    cat = config['cat']
  val_loader = get_data_loader(config['data_dir'], val_meta,
                               shuffle=False, rgb=config['rgb'],
                               transform=config['transform'], cat=cat)

  model = config['model']
  state_dict = torch.load(config['model_path'],
      map_location=(None if config['use_gpu'] else 'cpu'))
  model.load_state_dict(state_dict)

  if config['use_gpu']:
    model = model.cuda()
  evaluate(model, val_loader, config['n_round'],
      config['use_gpu'], config['im_type'])
Exemple #23
0
    def validate(self, ds_name='dev'):
        self._model.eval()
        losses, accuracies = 0, 0
        data_iter_eval = get_data_loader(
            self.dataset,
            ds_name,
            self.config['Trainer']['eval_batch_sz'],
            max_len=self.config['Model']
            ['max_len'],  # upper bound of input sentence length
            n_workers=self.config['Trainer']['n_workers'])
        kwargs = self.forward_args()
        kwargs['output_probs'] = True
        with torch.no_grad():
            for step, (data, data_lens) in enumerate(data_iter_eval):

                loss, acc, kwargs = self.forward_pass(data, data_lens, kwargs)
                accuracies += acc
                losses += loss.detach().item()
        loss_per_epoch = losses / (step + 1)
        return loss_per_epoch, accuracies / (step + 1)
Exemple #24
0
def main(opt):
    logger.info('Loading model: %s', opt.model_file)

    test_opt = {
        'label_file': opt.test_label,
        'imageinfo_file': opt.test_imageinfo,
        'image_dir': opt.test_image_dir,
        'batch_size': opt.batch_size,
        'num_workers': opt.num_workers,
        'train': False
    }

    checkpoint = torch.load(opt.model_file)

    test_loader = get_data_loader(test_opt)
    num_labels = test_loader.dataset.get_num_labels()

    logger.info('Building model...')
    checkpoint_opt = checkpoint['opt']
    model = DepNet(
        num_labels,
        finetune=checkpoint_opt.finetune,
        cnn_type=checkpoint_opt.cnn_type,
        pretrained=False)

    criterion = nn.MultiLabelSoftMarginLoss()
    model.load_state_dict(checkpoint['model'])

    if torch.cuda.is_available():
        model.cuda()
        criterion.cuda()

    logger.info('Start testing...')
    test_loss, test_score = test(checkpoint_opt, model, criterion, test_loader)
    logger.info('Test loss: \n%s', test_loss)
    logger.info('Test score: \n%s', test_score)

    out = {'map': test_score.map()}
    logger.info('Writing output to %s', opt.output_file)
    with open(opt.output_file, 'w') as f:
        json.dump(out, f)
def interpolate(args):
    model, z_dim = build_model(args.model)
    wrapper = Wrapper(args, model, z_dim)

    # load the target and mask
    loader = get_data_loader(args.input)
    criterion = Criterion(args)
    for idx, (image, _) in enumerate(loader):
        save_images(image, 'output/interpolate/%d' % (idx))
        target = image.to(device)
        param = sample_noise(z_dim,
                             device,
                             args.latent,
                             args.model,
                             model,
                             from_mean=True)
        param, recon = optimize_para(wrapper, param, target, criterion,
                                     args.n_iters)
        save_images(
            recon,
            'output/interpolate/%d_%s_%s' % (idx, args.model, args.latent))
        if idx % 2 == 0:
            src = param
            continue
        dst = param
        image_list = []
        with torch.no_grad():
            # todo: interpolation code
            for i in range(20):
                inter_param = src * (i * 0.05) + dst * (1 - i * 0.05)
                image_list.append(wrapper(inter_param))

        save_gifs(
            image_list,
            'output/interpolate/%d_%s_%s' % (idx, args.model, args.latent))
        if idx >= 3:
            break
    return
Exemple #26
0
def main(config):
    # use cuda ?
    if config.use_cuda:
        from torch.backends import cudnn
        cudnn.benchmark = True
    elif torch.cuda.is_available():
        print("WARNING: You have a CUDA device, so you should probably run with --cuda")

    # seed
    if config.seed == 0:
        config.seed = random.randint(1, 10000)  # fix seed
    print("Random Seed: ", config.seed)
    random.seed(config.seed)
    torch.manual_seed(config.seed)
    if config.use_cuda:
        torch.cuda.manual_seed_all(config.seed)

    # create directories if not exist
    if not os.path.exists(config.out_path):
        os.makedirs(config.out_path)

    # dataLoader
    trainLoader, testLoader = get_data_loader(config)
    print('train samples num: ', len(trainLoader), '  test samples num: ', len(testLoader))

    # model net
    model = RetinaNet(num_classes=config.n_classes)
    print(model)
    if config.pretrained != '':
        model.load_state_dict(torch.load(config.pretrained))
        print('load', config.pretrained)

    solver = Solver(config, model, trainLoader, testLoader)
    for epoch in range(config.n_epochs):
        solver.train(epoch)
        solver.test(epoch)
Exemple #27
0
def main(opt):

    # Set the random seed manually for reproducibility.
    if torch.cuda.is_available():
        torch.cuda.manual_seed(opt.seed)
    else:
        torch.manual_seed(opt.seed)

    train_loader = get_data_loader(opt,
                                   split='train',
                                   return_org_image=False)

    val_loader = get_data_loader(opt,
                                 split='val',
                                 return_org_image=False)

    output_dir = os.path.dirname(opt.output_file)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    logger.info('Building model...')

    model = LaneNet(cnn_type=opt.cnn_type, embed_dim=opt.embed_dim)
    model = DataParallelModel(model)

    criterion_disc = DiscriminativeLoss(delta_var=0.5,
                                        delta_dist=1.5,
                                        norm=2,
                                        usegpu=True)

    criterion_ce = nn.CrossEntropyLoss()

    optimizer = optim.Adam(model.parameters(), lr=opt.learning_rate)

    if opt.start_from:
        logger.info('Restart training from %s', opt.start_from)
        checkpoint = torch.load(opt.start_from)
        model.load_state_dict(checkpoint['model'])

    if torch.cuda.is_available():
        criterion_disc.cuda()
        criterion_ce.cuda()
        model = model.cuda()

    logger.info("Start training...")
    best_loss = sys.maxsize
    best_epoch = 0

    for epoch in tqdm(range(opt.num_epochs), desc='Epoch: '):
        learning_rate = adjust_learning_rate(opt, optimizer, epoch)
        logger.info('===> Learning rate: %f: ', learning_rate)

        # train for one epoch
        train(
            opt,
            model,
            criterion_disc,
            criterion_ce,
            optimizer,
            train_loader)

        # validate at every val_step epoch
        if epoch % opt.val_step == 0:
            val_loss = test(
                opt,
                model,
                criterion_disc,
                criterion_ce,
                val_loader)
            logger.info('Val loss: %s\n', val_loss)

            loss = val_loss.avg
            if loss < best_loss:
                logger.info(
                    'Found new best loss: %.7f, previous loss: %.7f',
                    loss,
                    best_loss)
                best_loss = loss
                best_epoch = epoch

                logger.info('Saving new checkpoint to: %s', opt.output_file)
                torch.save({
                    'epoch': epoch,
                    'model': model.state_dict(),
                    'best_loss': best_loss,
                    'best_epoch': best_epoch,
                    'opt': opt
                }, opt.output_file)

            else:
                logger.info(
                    'Current loss: %.7f, best loss is %.7f @ epoch %d',
                    loss,
                    best_loss,
                    best_epoch)

        if epoch - best_epoch > opt.max_patience:
            logger.info('Terminated by early stopping!')
            break
Exemple #28
0
def main():
    global args, best_prec1, device
    args = parser.parse_args()

    batch_size = args.batch_size * max(1, args.num_gpus)
    args.lr = args.lr * (batch_size / 256.)
    print(batch_size, args.lr, args.num_gpus)

    num_classes = 1000
    num_training_samples = 1281167
    args.num_batches_per_epoch = num_training_samples // batch_size

    assert os.path.isfile(args.load) and args.load.endswith(".pth.tar")
    args.save = os.path.dirname(args.load)
    training_mode = 'retrain' if args.retrain else 'finetune'
    args.save = os.path.join(args.save, training_mode)

    if not os.path.exists(args.save):
        os.makedirs(args.save)

    args.model_save_path = os.path.join(
        args.save, "epochs_{}_{}".format(args.epochs,
                                         os.path.basename(args.load)))
    args.distributed = args.world_size > 1

    ##########################################################
    ## create file handler which logs even debug messages
    #import logging
    #log = logging.getLogger()
    #log.setLevel(logging.INFO)

    #ch = logging.StreamHandler()
    #fh = logging.FileHandler(args.logging_file_path)

    #formatter = logging.Formatter('%(asctime)s - %(message)s')
    #ch.setFormatter(formatter)
    #fh.setFormatter(formatter)
    #log.addHandler(fh)
    #log.addHandler(ch)
    ##########################################################

    if args.distributed:
        dist.init_process_group(backend=args.dist_backend,
                                init_method=args.dist_url,
                                world_size=args.world_size)

    # Use CUDA
    args.use_cuda = torch.cuda.is_available() and not args.no_cuda

    # Random seed
    random.seed(0)
    torch.manual_seed(0)
    if args.use_cuda:
        torch.cuda.manual_seed_all(0)
        device = 'cuda'
        cudnn.benchmark = True
    else:
        device = 'cpu'

    if args.evaluate == 1:
        device = 'cuda:0'

    assert os.path.isfile(args.load)
    print("=> loading checkpoint '{}'".format(args.load))
    checkpoint = torch.load(args.load)

    model = mobilenetv2(cfg=checkpoint['cfg'])
    cfg = model.cfg

    total_params = print_model_param_nums(model.cpu())
    total_flops = print_model_param_flops(model.cpu(),
                                          224,
                                          multiply_adds=False)
    print(total_params, total_flops)

    if not args.distributed:
        model = torch.nn.DataParallel(model).to(device)
    else:
        model.to(device)
        model = torch.nn.parallel.DistributedDataParallel(model)

    ##### finetune #####
    if not args.retrain:
        model.load_state_dict(checkpoint['state_dict'])

    # define loss function (criterion) and optimizer
    if args.label_smoothing:
        criterion = CrossEntropyLabelSmooth(num_classes).to(device)
    else:
        criterion = nn.CrossEntropyLoss().to(device)

    ### all parameter ####
    no_wd_params, wd_params = [], []
    for name, param in model.named_parameters():
        if param.requires_grad:
            if ".bn" in name or '.bias' in name:
                no_wd_params.append(param)
            else:
                wd_params.append(param)
    no_wd_params = nn.ParameterList(no_wd_params)
    wd_params = nn.ParameterList(wd_params)

    optimizer = torch.optim.SGD([
        {
            'params': no_wd_params,
            'weight_decay': 0.
        },
        {
            'params': wd_params,
            'weight_decay': args.weight_decay
        },
    ],
                                args.lr,
                                momentum=args.momentum)

    # optionally resume from a checkpoint
    if args.resume:
        if os.path.isfile(args.model_save_path):
            print("=> loading checkpoint '{}'".format(args.model_save_path))
            checkpoint = torch.load(args.model_save_path)
            args.start_epoch = checkpoint['epoch']
            best_prec1 = checkpoint['best_prec1']
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("=> loaded checkpoint '{}' (epoch {})".format(
                args.model_save_path, checkpoint['epoch']))
        else:
            pass

    # Data loading code
    train_loader, val_loader = \
        get_data_loader(args.data, train_batch_size=batch_size, test_batch_size=32, workers=args.workers)

    if args.evaluate:
        validate(val_loader, model, criterion)
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            train_sampler.set_epoch(epoch)

        #adjust_learning_rate(optimizer, epoch)
        # train for one epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        prec1 = validate(val_loader, model, criterion)

        # remember best prec@1 and save checkpoint
        is_best = prec1 > best_prec1
        best_prec1 = max(prec1, best_prec1)
        save_checkpoint(
            {
                'epoch': epoch + 1,
                'cfg': cfg,
                #'m': args.m,
                'state_dict': model.state_dict(),
                'best_prec1': best_prec1,
                'optimizer': optimizer.state_dict(),
            },
            args.model_save_path)

        print('  + Number of params: %.3fM' % (total_params / 1e6))
        print('  + Number of FLOPs: %.3fG' % (total_flops / 1e9))
Exemple #29
0
    def test(self, state_dict=None):
        # load model
        if not state_dict:
            self.load_model(self.config['load_model_path'],
                            self.config['load_optimizer'])
        else:
            self.model.load_state_dict(state_dict)
        # get test dataset
        root_dir = self.config['dataset_root_dir']
        test_set = self.config['test_set']
        test_file_name = self.config['test_file_name']
        test_dataset = PickleDataset(os.path.join(root_dir, f'{test_set}.p'),
                                     config=None,
                                     sort=False)
        test_loader = get_data_loader(test_dataset,
                                      batch_size=2,
                                      shuffle=False)

        self.model.eval()
        all_prediction, all_ys = [], []
        gold_transcripts = []
        for step, data in enumerate(self.dev_loader):
            bos = self.vocab['<BOS>']
            eos = self.vocab['<EOS>']
            pad = self.vocab['<PAD>']
            xs, ilens, ys, ys_in, ys_out, spks, envs, trans = to_gpu(
                data, bos, eos, pad)
            # feed previous
            _, prediction, _, enc_outputs, enc_lens = self.model(
                xs,
                ilens,
                None,
                max_dec_timesteps=self.config['max_dec_timesteps'])
            all_prediction = all_prediction + prediction.cpu().numpy().tolist()
            all_ys = all_ys + [y.cpu().numpy().tolist() for y in ys]
            gold_transcripts += trans
        cer, prediction_sents, ground_truth_sents = self.ind2sent(
            all_prediction, all_ys)
        print(f'dev set CER: {cer:.4f}')

        all_prediction, all_ys = [], []
        gold_transcripts = []
        for step, data in enumerate(test_loader):
            bos = self.vocab['<BOS>']
            eos = self.vocab['<EOS>']
            pad = self.vocab['<PAD>']
            xs, ilens, ys, ys_in, ys_out, spks, envs, trans = to_gpu(
                data, bos, eos, pad)
            # feed previous
            _, prediction, _, enc_outputs, enc_lens = self.model(
                xs,
                ilens,
                None,
                max_dec_timesteps=self.config['max_dec_timesteps'])
            all_prediction = all_prediction + prediction.cpu().numpy().tolist()
            all_ys = all_ys + [y.cpu().numpy().tolist() for y in ys]
            gold_transcripts += trans
        self.model.train()
        cer, prediction_sents, ground_truth_sents = self.ind2sent(
            all_prediction, all_ys)
        with open(f'{test_file_name}.txt', 'w') as f:
            for p in prediction_sents:
                f.write(f'{p}\n')
        print(
            f'{test_file_name}: {len(prediction_sents)} utterances, CER={cer:.4f}'
        )
        return cer
Exemple #30
0
def main(config=None):
    # set data loader
    val_loader = get_data_loader(config, evaluate=True)
    model = get_model()
    trainer = Trainer(config=config, model=model, validation_loader=val_loader, train_loader_fn=train_loader_fn)
    trainer.train()