def __init__(self, n_epochs, lr): self.n_epochs = n_epochs self.lr = lr self.datasets, self.dataloaders = get_ds_loaders() self.model = CustomNet().to(device) self.criterion = torch.nn.CrossEntropyLoss() self.build_opt() self.vis = Visualizer()
def __init__(self, lr, n_epochs): self.criterion = nn.CrossEntropyLoss() self.n_epochs = n_epochs self.lr = lr self.build_net() self.build_opt() self.datasets, self.dataloaders = get_ds_loaders() self.vis = Visualizer()
# Device configuration device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") resnet_origin = resnet18(pretrained=True) # original ResNet without_fc = nn.Sequential(*list(resnet_origin.children())[:-1]).to( device) # removing last FC layer from ResNet resnet_ft = torch.load( "../01_modify_last_FC_layer/ResNet18_CIFAR10_finetuned.pth", map_location='cpu') # finetuning last FC layer with 10 classes # print(resnet_origin) # print(without_fc) # print(resnet_ft) datasets, dataloaders = get_ds_loaders() for images, labels in dataloaders['train']: images = images.to(device) labels = labels.to(device) out1 = resnet_origin(images) print("ResNet original", out1.shape) # 100, 1000 out2 = without_fc(images) print("Without FC layer", out2.shape) # 100, 512, 1, 1 out3 = resnet_ft(images) print("Finetuned FC layer", out3.shape) # 100, 10 break
def __init__(self, ckpt_path): self.ckpt_path = ckpt_path self.datasets, self.dataloaders = get_ds_loaders() self.build_net() self.load_trained_model()