def get_raw_data(dataset_name): raw_data = None if dataset_name == "amazon_book": raw_data = dataloader.load_amazon_book() elif dataset_name == "citeulike": raw_data = dataloader.load_citeulike() elif dataset_name == "tradesy": raw_data = dataloader.load_tradesy() else: print("Bad dataset name.") exit() return raw_data
import os import sys sys.path.append(os.getcwd()) from openrec.legacy import ImplicitModelTrainer from openrec.legacy.utils import ImplicitDataset from openrec.legacy.recommenders import ConcatVisualBPR from openrec.legacy.utils.evaluators import AUC from openrec.legacy.utils.samplers import PairwiseSampler from config import sess_config import dataloader raw_data = dataloader.load_tradesy() batch_size = 1000 test_batch_size = 100 item_serving_size = 1000 display_itr = 10000 train_dataset = ImplicitDataset(raw_data['train_data'], raw_data['max_user'], raw_data['max_item'], name='Train') val_dataset = ImplicitDataset(raw_data['val_data'], raw_data['max_user'], raw_data['max_item'], name='Val') test_dataset = ImplicitDataset(raw_data['test_data'], raw_data['max_user'], raw_data['max_item'], name='Test')