Exemple #1
0
    def infer(data, rescale=RESCALE, resize_factor=RESIZE):  ## test mode
        ##### DO NOT CHANGE ORDER OF TEST DATA #####
        X = []
        for i, d in enumerate(data):
            X.append(image_preprocessing(d, rescale, resize_factor))
        X = np.array(X)
        p1 = m1.predict(X)

        X2 = []
        for i, d in enumerate(data):
            X2.append(image_preprocessing2(d, rescale, resize_factor))
        X2 = np.array(X2)
        p2 = m2.predict(X2)

        # X3 = []
        # for i, d in enumerate(data):
        #     X3.append(image_preprocessing3(d, rescale, resize_factor))
        # X3 = np.array(X3)
        # p3 = m3.predict(X3)

        # X4 = []
        # for i, d in enumerate(data):
        #     X4.append(image_preprocessing4(d, rescale, resize_factor))
        # X4 = np.array(X4)
        # p4 = m4.predict(X4)

        pp1 = []
        for p in p1:
            p = new_softmax(p)
            pp1.append(p)

        pp2 = []
        for p in p2:
            p = new_softmax(p)
            pp2.append(p)

        # pp3 = []
        # for p in p3:
        #     p = new_softmax(p)
        #     pp3.append(p)

        # pp4 = []
        # for p in p4:
        #     p = new_softmax(p)
        #     pp4.append(p)

        pp1 = np.array(pp1)
        pp2 = np.array(pp2)
        # pp3 = np.array(pp3)
        # pp4 = np.array(pp4)

        # X = (pp1 + pp2 + pp3 + pp4) / 4
        X = (pp1 + pp2) / 2

        pred = np.argmax(X, axis=-1)

        print('Prediction done!\n Saving the result...')
        return pred
Exemple #2
0
    def infer(data, rescale=RESCALE, resize_factor=RESIZE):  ## test mode
        ##### DO NOT CHANGE ORDER OF TEST DATA #####
        X = []
        for i, d in enumerate(data):
            X.append(image_preprocessing(d, rescale, resize_factor))
        X = np.array(X)

        pred = model.predict(X)
        print('Prediction done!\n Saving the result...')
        return pred
Exemple #3
0
    def infer(data, rescale=RESCALE, resize_factor=RESIZE):  ## test mode
        ##### DO NOT CHANGE ORDER OF TEST DATA #####
        X = []
        for i, d in enumerate(data):
            # test 데이터를 training 데이터와 같이 전처리 하기
            X.append(image_preprocessing(d, rescale, resize_factor))
        X = np.array(X)

        pred = model.predict(X)     # 모델 예측 결과: 0-3
        pred = np.argmax(pred, axis=1)
        print('Prediction done!\n Saving the result...')
        return pred
Exemple #4
0
    def infer(
        data,
        target_resolution=TARGET_RESOLUTION,
    ):  ## test mode
        ##### DO NOT CHANGE ORDER OF TEST DATA #####
        X = []
        for i, d in enumerate(data):
            # test 데이터를 training 데이터와 같이 전처리 하기
            X.append(image_preprocessing(d, target_resolution, normalize=True))
        X = np.array(X)

        pred = model.predict(X)
        pred = np.argmax(pred, axis=1)  # 모델 예측 결과: 0-3
        print('Prediction done!\n Saving the result...')
        return pred
Exemple #5
0
    def infer(data, rescale=RESCALE, resize_factor=RESIZE):  ## test mode
        ##### DO NOT CHANGE ORDER OF TEST DATA #####
        X = []
        for i, d in enumerate(data):
            # test 데이터를 training 데이터와 같이 전처리 하기
            X.append(image_preprocessing(d, rescale, resize_factor))
        X = np.array(X)

        inception_pred = inception_model.predict(X)
        efficient_pred = efficient_model.predict(X)
        # mobilenet_pred = mobilenet_model.predict(X)
        # resnet_pred = resnet_model.predict(X)
        # densenet_pred = densenet_model.predict(X)

        pred = (inception_pred * inception_ratio +
                efficient_pred * efficient_ratio)
        # pred += (mobilenet_pred * mobilenet_ratio)
        # pred += (resnet_pred * resnet_ratio + densenet_pred * densenet_ratio)
        pred = np.argmax(pred, axis=1)
        print('Prediction done!\n Saving the result...')
        return pred