def batch(self): size = self.batchSize * self.nPassD xmb = toy_dataset(DATASET=self.name, size=size) if xmb.shape[0] == size: self.lastBatch = xmb else: self.lastBatch = xmb[:size] return self.lastBatch
def main(): #set modules path import random random.seed(2334) samples = 2500 dataname = "25gaussians" X = datasets.toy_dataset(dataname, size=samples) print(mmd_toy_metric(X, dataname, samples, perms=10))
def compute_metrics(self, instances, generator, samples=512): #metric set s_zmb = self.noise_batch(samples) xreal = toy_dataset(DATASET=self.name, size=samples) #compue mmd for all points mmd2_all = [] for i in range(0, len(instances)): xfake = generator(instances[i], s_zmb) mmd2_all.append(abs(compute_metric_mmd2(xfake, xreal))) #return return np.array(mmd2_all)
def mmd_toy_metric(X, dataname, samples=1000, perms=100, prog_bar=True): if type(dataname) is str: Y = datasets.toy_dataset(dataname, size=samples) sigma = datasets.toy_dataset_stdev(dataname) elif type(dataname) is tuple: Y, sigma = dataname else: raise "dataname has to be a string or tuple" kernel = lambda X, Y: gauss_kernel(X, Y, sigma) mmd = lambda X, Y: quadratic_time_mmd(X, Y, kernel) statistic = mmd(X, Y) p_value = None if perms > 0: statistics = two_sample_permutation_test(mmd, X, Y, perms, prog_bar=prog_bar) p_value = np.mean(statistic <= np.sort(statistics)) return statistic, p_value
def main(genpath,datasetname,outpath,target=False): #params DIM = 512 SAMPLES = 3000 #3000 nz = 2 if target: #load samples from db xmb = toy_dataset(DATASET=datasetname, size=SAMPLES) generate_image(xmb, path=outpath) else: #load gen_fn, generator = create_G(DIM = DIM) #for all in the path: params_map = dict(np.load(genpath)) params=list() for key,vals in sorted(params_map.items(),key=lambda x: int(x[0].split("_")[1])): params.append(np.float32(vals)) #set params lasagne.layers.set_all_param_values(generator, params) # generate sample s_zmb = floatX(np_rng.uniform(-1., 1., size=(SAMPLES, nz))) g_imgs = gen_fn(s_zmb) generate_image(g_imgs, path=outpath)
def main(path, datasetname): #params DIM = 512 SAMPLES = 25000 nz = 2 #load gen_fn, generator = create_G(DIM=DIM) #load samples from db xmb = toy_dataset(DATASET=datasetname, size=SAMPLES) #for all in the path: for root, dirs, files in os.walk(path): mmd_list = [] files.sort(key=lambda x: int(x.split("_")[1].split(".")[0])) for filename in files: try: genpath = os.path.join(root, filename) params_map = dict(np.load(genpath)) params = list() for key, vals in sorted(params_map.items(), key=lambda x: int(x[0].split("_")[1])): params.append(np.float32(vals)) #set params lasagne.layers.set_all_param_values(generator, params) # generate sample s_zmb = floatX(np_rng.uniform(-1., 1., size=(SAMPLES, nz))) g_imgs = gen_fn(s_zmb) mmd = abs(compute_metric_mmd2(g_imgs, xmb)) print("MMD: ", mmd, genpath) mmd_list.append((mmd, genpath)) except: pass mmd_list.sort(key=lambda v: v[0]) i = 0 for val, name in mmd_list[:10]: i += 1 print("Best MMD[" + str(i) + "]", val, math.sqrt(val), name)
def main(): # Parameters task = 'toy' name = '25G' DIM=512 begin_save = 0 loss_type = ['trickLogD','minimax','ls'] nloss = 3 DATASET = '25gaussians' batchSize = 64 ncandi = 1 kD = 1 # # of discrim updates for each gen update kG = 1 # # of discrim updates for each gen update ntf = 256 b1 = 0.5 # momentum term of adam nz = 2 # # of dim for Z niter = 4 # # of iter at starting learning rate lr = 0.0001 # initial learning rate for adam G lrd = 0.0001 # initial learning rate for adam D N_up = 100000 save_freq = 10000 show_freq = 10000 test_deterministic = True beta = 1. GP_norm = False # if use gradients penalty on discriminator LAMBDA = 2. # hyperparameter of GP # Load the dataset # MODEL D print("Building model and compiling functions...") # Prepare Theano variables for inputs and targets real_imgs = T.matrix('real_imgs') fake_imgs = T.matrix('fake_imgs') # Create neural network model discriminator = models_uncond.build_discriminator_toy(nd=DIM, GP_norm=GP_norm) # Create expression for passing real data through the discriminator real_out = lasagne.layers.get_output(discriminator, real_imgs) # Create expression for passing fake data through the discriminator fake_out = lasagne.layers.get_output(discriminator, fake_imgs) # Create loss expressions discriminator_loss = (lasagne.objectives.binary_crossentropy(real_out, 1) + lasagne.objectives.binary_crossentropy(fake_out, 0)).mean() # Gradients penalty norm if GP_norm is True: alpha = t_rng.uniform((batchSize,1), low=0.,high=1.) differences = fake_imgs - real_imgs interpolates = real_imgs + (alpha*differences) gradients = theano.grad(lasagne.layers.get_output(discriminator, interpolates).sum(), wrt=interpolates) slopes = T.sqrt(T.sum(T.sqr(gradients), axis=(1))) gradient_penalty = T.mean((slopes-1.)**2) D_loss = discriminator_loss + LAMBDA*gradient_penalty b1_d = 0. else: D_loss = discriminator_loss b1_d = 0. # Create update expressions for training discriminator_params = lasagne.layers.get_all_params(discriminator, trainable=True) lrtd = theano.shared(lasagne.utils.floatX(lrd)) updates_d = lasagne.updates.adam( D_loss, discriminator_params, learning_rate=lrtd, beta1=b1_d) lrt = theano.shared(lasagne.utils.floatX(lr)) # Fd Socre Fd = theano.gradient.grad(discriminator_loss, discriminator_params) Fd_score = beta*T.log(sum(T.sum(T.sqr(x)) for x in Fd)) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_d = theano.function([real_imgs, fake_imgs], discriminator_loss, updates=updates_d) # Compile another function generating some data dis_fn = theano.function([real_imgs,fake_imgs],[(fake_out).mean(),Fd_score]) disft_fn = theano.function([real_imgs,fake_imgs], [real_out.mean(), fake_out.mean(), (real_out>0.5).mean(), (fake_out>0.5).mean(), Fd_score]) # Finally, launch the training loop. print("Starting training...") desc = task + '_' + name print desc if not os.path.isdir('logs'): os.mkdir(os.path.join('logs')) f_log = open('logs/%s.ndjson'%desc, 'wb') if not os.path.isdir('models'): os.mkdir(os.path.join('models/')) if not os.path.isdir('models/'+desc): os.mkdir(os.path.join('models/',desc)) gen_new_params = [] # We iterate over epochs: for n_updates in range(N_up): xmb = toy_dataset(DATASET=DATASET, size=batchSize*kD) xmb = xmb[0:batchSize*kD] # initial G cluster if n_updates == 0: for can_i in range(0,ncandi): train_g, gen_fn, generator = create_G( loss_type=loss_type[can_i%nloss], discriminator=discriminator, lr=lr, b1=b1, DIM=DIM) for _ in range(0,kG): zmb = floatX(np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g(zmb) sample_zmb = floatX(np_rng.uniform(-1., 1., size=(ntf, nz))) gen_imgs = gen_fn(sample_zmb) gen_new_params.append(lasagne.layers.get_all_param_values(generator)) if can_i == 0: g_imgs_old=gen_imgs fmb = gen_imgs[0:batchSize/ncandi*kD,:] else: g_imgs_old = np.append(g_imgs_old,gen_imgs,axis=0) fmb = np.append(fmb,gen_imgs[0:batchSize/ncandi*kD,:],axis=0) #print gen_new_params # MODEL G noise = T.matrix('noise') generator = models_uncond.build_generator_toy(noise,nd=DIM) Tgimgs = lasagne.layers.get_output(generator) Tfake_out = lasagne.layers.get_output(discriminator, Tgimgs) g_loss_logD = lasagne.objectives.binary_crossentropy(Tfake_out, 1).mean() g_loss_minimax = -lasagne.objectives.binary_crossentropy(Tfake_out, 0).mean() g_loss_ls = T.mean(T.sqr((Tfake_out - 1))) g_params = lasagne.layers.get_all_params(generator, trainable=True) up_g_logD = lasagne.updates.adam(g_loss_logD, g_params, learning_rate=lrt, beta1=b1) up_g_minimax = lasagne.updates.adam(g_loss_minimax, g_params, learning_rate=lrt, beta1=b1) up_g_ls = lasagne.updates.adam(g_loss_ls, g_params, learning_rate=lrt, beta1=b1) train_g = theano.function([noise],g_loss_logD,updates=up_g_logD) train_g_minimax = theano.function([noise],g_loss_minimax,updates=up_g_minimax) train_g_ls = theano.function([noise],g_loss_ls,updates=up_g_ls) gen_fn = theano.function([noise], lasagne.layers.get_output( generator,deterministic=True)) else: gen_old_params = gen_new_params for can_i in range(0,ncandi): for type_i in range(0,nloss): lasagne.layers.set_all_param_values(generator, gen_old_params[can_i]) if loss_type[type_i] == 'trickLogD': for _ in range(0,kG): zmb = floatX(np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g(zmb) elif loss_type[type_i] == 'minimax': for _ in range(0,kG): zmb = floatX(np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g_minimax(zmb) elif loss_type[type_i] == 'ls': for _ in range(0,kG): zmb = floatX(np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g_ls(zmb) sample_zmb = floatX(np_rng.uniform(-1., 1., size=(ntf, nz))) gen_imgs = gen_fn(sample_zmb) frr_score, fd_score = dis_fn(xmb[0:ntf],gen_imgs) #frr = frr[0] frr = frr_score - fd_score if can_i*nloss + type_i < ncandi: idx = can_i*nloss + type_i gen_new_params[idx]=lasagne.layers.get_all_param_values(generator) fake_rate[idx]=frr g_imgs_old[idx*ntf:(idx+1)*ntf,:]=gen_imgs fmb[idx*batchSize/ncandi*kD:(idx+1)*batchSize/ncandi*kD,:] = \ gen_imgs[0:batchSize/ncandi*kD,:] else: fr_com = fake_rate - frr if min(fr_com) < 0: ids_replace = np.where(fr_com==min(fr_com)) idr = ids_replace[0][0] fake_rate[idr]=frr gen_new_params[idr] = lasagne.layers.get_all_param_values(generator) g_imgs_old[idr*ntf:(idr+1)*ntf,:]=gen_imgs fmb[idr*batchSize/ncandi*kD:(idr+1)*batchSize/ncandi*kD,:] = \ gen_imgs[0:batchSize/ncandi*kD,:] sample_xmb = toy_dataset(DATASET=DATASET, size=ncandi*ntf) sample_xmb = sample_xmb[0:ncandi*ntf] for i in range(0, ncandi): xfake = g_imgs_old[i*ntf:(i+1)*ntf,:] xreal = sample_xmb[i*ntf:(i+1)*ntf,:] tr, fr, trp, frp, fdscore = disft_fn(xreal,xfake) if i == 0: fake_rate = np.array([fr]) real_rate = np.array([tr]) fake_rate_p = np.array([frp]) real_rate_p = np.array([trp]) FDL = np.array([fdscore]) else: fake_rate = np.append(fake_rate,fr) real_rate = np.append(real_rate,tr) fake_rate_p = np.append(fake_rate_p,frp) real_rate_p = np.append(real_rate_p,trp) FDL = np.append(FDL,fdscore) print fake_rate, fake_rate_p, FDL print (n_updates, real_rate.mean(), real_rate_p.mean()) f_log.write(str(fake_rate)+' '+str(fake_rate_p)+'\n'+ str(n_updates) + ' ' + str(real_rate.mean())+ ' ' +str(real_rate_p.mean())+'\n') f_log.flush() # train D for xreal,xfake in iter_data(xmb, shuffle(fmb), size=batchSize): cost = train_d(xreal, xfake) if n_updates%show_freq == 0: s_zmb = floatX(np_rng.uniform(-1., 1., size=(512, nz))) g_imgs = gen_fn(s_zmb) xmb = toy_dataset(DATASET=DATASET, size=512) generate_image(xmb,g_imgs,n_updates/save_freq,desc)
def main( problem, popsize, moegan, freq, loss_type=['trickLogD', 'minimax', 'ls'], postfix=None, nPassD=1, #backpropagation pass for discriminator inBatchSize=64): # Parameters task = 'toy' name = '{}_{}_{}MMDu2'.format( problem, "MOEGAN" if moegan else "EGAN", postfix + "_" if postfix is not None else "") #'8G_MOEGAN_PFq_NFd_t2' DIM = 512 begin_save = 0 nloss = len(loss_type) batchSize = inBatchSize if problem == "8G": DATASET = '8gaussians' elif problem == "25G": DATASET = '25gaussians' else: exit(-1) ncandi = popsize kD = nPassD # # of discrim updates for each gen update kG = 1 # # of discrim updates for each gen update ntf = 256 b1 = 0.5 # momentum term of adam nz = 2 # # of dim for Z niter = 4 # # of iter at starting learning rate lr = 0.0001 # initial learning rate for adam G lrd = 0.0001 # initial learning rate for adam D N_up = 100000 save_freq = freq show_freq = freq test_deterministic = True beta = 1. GP_norm = False # if use gradients penalty on discriminator LAMBDA = 2. # hyperparameter sudof GP NSGA2 = moegan # Load the dataset # MODEL D print("Building model and compiling functions...") # Prepare Theano variables for inputs and targets real_imgs = T.matrix('real_imgs') fake_imgs = T.matrix('fake_imgs') # Create neural network model discriminator = models_uncond.build_discriminator_toy(nd=DIM, GP_norm=GP_norm) # Create expression for passing real data through the discriminator real_out = lasagne.layers.get_output(discriminator, real_imgs) # Create expression for passing fake data through the discriminator fake_out = lasagne.layers.get_output(discriminator, fake_imgs) # Create loss expressions discriminator_loss = ( lasagne.objectives.binary_crossentropy(real_out, 1) + lasagne.objectives.binary_crossentropy(fake_out, 0)).mean() # Gradients penalty norm if GP_norm is True: alpha = t_rng.uniform((batchSize, 1), low=0., high=1.) differences = fake_imgs - real_imgs interpolates = real_imgs + (alpha * differences) gradients = theano.grad(lasagne.layers.get_output( discriminator, interpolates).sum(), wrt=interpolates) slopes = T.sqrt(T.sum(T.sqr(gradients), axis=(1))) gradient_penalty = T.mean((slopes - 1.)**2) D_loss = discriminator_loss + LAMBDA * gradient_penalty b1_d = 0. else: D_loss = discriminator_loss b1_d = 0. # Create update expressions for training discriminator_params = lasagne.layers.get_all_params(discriminator, trainable=True) lrtd = theano.shared(lasagne.utils.floatX(lrd)) updates_d = lasagne.updates.adam(D_loss, discriminator_params, learning_rate=lrtd, beta1=b1_d) lrt = theano.shared(lasagne.utils.floatX(lr)) # Fd Socre Fd = theano.gradient.grad(discriminator_loss, discriminator_params) Fd_score = beta * T.log(sum(T.sum(T.sqr(x)) for x in Fd)) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_d = theano.function([real_imgs, fake_imgs], discriminator_loss, updates=updates_d) # Compile another function generating some data dis_fn = theano.function([real_imgs, fake_imgs], [(fake_out).mean(), Fd_score]) disft_fn = theano.function([real_imgs, fake_imgs], [ real_out.mean(), fake_out.mean(), (real_out > 0.5).mean(), (fake_out > 0.5).mean(), Fd_score ]) #main MODEL G noise = T.matrix('noise') generator_trainer = create_G(noise=noise, discriminator=discriminator, lr=lr, b1=b1, DIM=DIM) # Finally, launch the training loop. print("Starting training...") desc = task + '_' + name print(desc) if not os.path.isdir('front'): os.mkdir(os.path.join('front')) if not os.path.isdir('front/' + desc): os.mkdir(os.path.join('front/', desc)) if not os.path.isdir('logs'): os.mkdir(os.path.join('logs')) f_log = open('logs/%s.ndjson' % desc, 'wb') if not os.path.isdir('models'): os.mkdir(os.path.join('models/')) if not os.path.isdir('models/' + desc): os.mkdir(os.path.join('models/', desc)) instances = [] class Instance: def __init__(self, fq, fd, params, img_values): self.fq = fq self.fd = fd self.params = params self.img = img_values def f(self): return self.fq - self.fd # We iterate over epochs: for n_updates in range(N_up): xmb = toy_dataset(DATASET=DATASET, size=batchSize * kD) xmb = xmb[0:batchSize * kD] # initial G cluster if n_updates == 0: for can_i in range(0, ncandi): init_generator_trainer = create_G(noise=noise, discriminator=discriminator, lr=lr, b1=b1, DIM=DIM) zmb = floatX(np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = init_generator_trainer.train(loss_type[can_i % nloss], zmb) sample_zmb = floatX(np_rng.uniform(-1., 1., size=(ntf, nz))) gen_imgs = init_generator_trainer.gen(sample_zmb) frr_score, fd_score = dis_fn(xmb[0:ntf], gen_imgs) instances.append( Instance( frr_score, fd_score, lasagne.layers.get_all_param_values( init_generator_trainer.generator), gen_imgs)) else: instances_old = instances instances = [] for can_i in range(0, ncandi): for type_i in range(0, nloss): generator_trainer.set(instances_old[can_i].params) #train zmb = floatX(np_rng.uniform(-1., 1., size=(batchSize, nz))) generator_trainer.train(loss_type[type_i], zmb) #score sample_zmb = floatX(np_rng.uniform(-1., 1., size=(ntf, nz))) gen_imgs = generator_trainer.gen(sample_zmb) frr_score, fd_score = dis_fn(xmb[0:ntf], gen_imgs) #save instances.append( Instance(frr_score, fd_score, generator_trainer.get(), gen_imgs)) if ncandi <= (len(instances) + len(instances_old)): if NSGA2 == True: #add parents in the pool for inst in instances_old: generator_trainer.set(inst.params) sample_zmb = floatX( np_rng.uniform(-1., 1., size=(ntf, nz))) gen_imgs = generator_trainer.gen(sample_zmb) frr_score, fd_score = dis_fn(xmb[0:ntf], gen_imgs) instances.append( Instance(frr_score, fd_score, generator_trainer.get(), gen_imgs)) #cromos = { idx:[float(inst.fq),-0.5*float(inst.fd)] for idx,inst in enumerate(instances) } # S1 cromos = { idx: [-float(inst.fq), 0.5 * float(inst.fd)] for idx, inst in enumerate(instances) } # S2 cromos_idxs = [idx for idx, _ in enumerate(instances)] finalpop = nsga_2_pass(ncandi, cromos, cromos_idxs) instances = [instances[p] for p in finalpop] with open('front/%s.tsv' % desc, 'wb') as ffront: for inst in instances: ffront.write( (str(inst.fq) + "\t" + str(inst.fd)).encode()) ffront.write("\n".encode()) elif nloss > 1: #sort new instances.sort( key=lambda inst: -inst.f()) #wrong def in the paper #print([inst.f() for inst in instances]) #cut best ones instances = instances[len(instances) - ncandi:] #print([inst.f() for inst in instances]) sample_xmb = toy_dataset(DATASET=DATASET, size=ncandi * ntf) sample_xmb = sample_xmb[0:ncandi * ntf] for i in range(0, ncandi): xfake = instances[i].img[0:ntf, :] xreal = sample_xmb[i * ntf:(i + 1) * ntf, :] tr, fr, trp, frp, fdscore = disft_fn(xreal, xfake) fake_rate = np.array([fr]) if i == 0 else np.append(fake_rate, fr) real_rate = np.array([tr]) if i == 0 else np.append(real_rate, tr) fake_rate_p = np.array([frp]) if i == 0 else np.append( fake_rate_p, frp) real_rate_p = np.array([trp]) if i == 0 else np.append( real_rate_p, trp) FDL = np.array([fdscore]) if i == 0 else np.append(FDL, fdscore) print(fake_rate, fake_rate_p, FDL) print(n_updates, real_rate.mean(), real_rate_p.mean()) f_log.write((str(fake_rate) + ' ' + str(fake_rate_p) + '\n' + str(n_updates) + ' ' + str(real_rate.mean()) + ' ' + str(real_rate_p.mean()) + '\n').encode()) f_log.flush() # train D #for xreal, xfake in iter_data(xmb, shuffle(fmb), size=batchSize): # cost = train_d(xreal, xfake) imgs_fakes = instances[0].img[0:int(batchSize / ncandi * kD), :] for i in range(1, len(instances)): img = instances[i].img[0:int(batchSize / ncandi * kD), :] imgs_fakes = np.append(imgs_fakes, img, axis=0) for xreal, xfake in iter_data(xmb, shuffle(imgs_fakes), size=batchSize): cost = train_d(xreal, xfake) if (n_updates % show_freq == 0 and n_updates != 0) or n_updates == 1: id_update = int(n_updates / save_freq) #metric s_zmb = floatX(np_rng.uniform(-1., 1., size=(512, nz))) xmb = toy_dataset(DATASET=DATASET, size=512) #compue mmd for all points mmd2_all = [] for i in range(0, ncandi): generator_trainer.set(instances[i].params) g_imgs = generator_trainer.gen(s_zmb) mmd2_all.append(abs(compute_metric_mmd2(g_imgs, xmb))) mmd2_all = np.array(mmd2_all) #print pareto front if NSGA2 == True: front_path = os.path.join('front/', desc) with open('%s/%d_%s_mmd2u.tsv' % (front_path, id_update, desc), 'wb') as ffront: for idx in range(0, ncandi): ffront.write((str(instances[idx].fq) + "\t" + str(instances[idx].fd) + "\t" + str(mmd2_all[idx])).encode()) ffront.write("\n".encode()) #mmd2 output print(n_updates, "mmd2u:", np.min(mmd2_all), "id:", np.argmin(mmd2_all)) #save best params = instances[np.argmin(mmd2_all)].params generator_trainer.set(params) g_imgs_min = generator_trainer.gen(s_zmb) generate_image(xmb, g_imgs_min, id_update, desc, postfix="_mmu2d_best") np.savez('models/%s/gen_%d.npz' % (desc, id_update), *lasagne.layers.get_all_param_values(discriminator)) np.savez('models/%s/dis_%d.npz' % (desc, id_update), *generator_trainer.get()) #worst_debug params = instances[np.argmax(mmd2_all)].params generator_trainer.set(params) g_imgs_max = generator_trainer.gen(s_zmb) generate_image(xmb, g_imgs_max, id_update, desc, postfix="_mmu2d_worst")
def main(): # Parameters task = 'toy' name = '8G_MOEGAN_MMDu2' #'8G_MOEGAN_PFq_NFd_t2' DIM = 512 begin_save = 0 loss_type = ['trickLogD', 'minimax', 'ls'] #['trickLogD', 'minimax', 'ls'] nloss = 3 #2 DATASET = '8gaussians' batchSize = 64 ncandi = 8 kD = 1 # # of discrim updates for each gen update kG = 1 # # of discrim updates for each gen update ntf = 256 b1 = 0.5 # momentum term of adam nz = 2 # # of dim for Z niter = 4 # # of iter at starting learning rate lr = 0.0001 # initial learning rate for adam G lrd = 0.0001 # initial learning rate for adam D N_up = 100000 save_freq = 10000 / 10 show_freq = 10000 / 10 test_deterministic = True beta = 1. GP_norm = False # if use gradients penalty on discriminator LAMBDA = 2. # hyperparameter of GP NSGA2 = True # Load the dataset # MODEL D print("Building model and compiling functions...") # Prepare Theano variables for inputs and targets real_imgs = T.matrix('real_imgs') fake_imgs = T.matrix('fake_imgs') # Create neural network model discriminator = models_uncond.build_discriminator_toy(nd=DIM, GP_norm=GP_norm) # Create expression for passing real data through the discriminator real_out = lasagne.layers.get_output(discriminator, real_imgs) # Create expression for passing fake data through the discriminator fake_out = lasagne.layers.get_output(discriminator, fake_imgs) # Create loss expressions discriminator_loss = ( lasagne.objectives.binary_crossentropy(real_out, 1) + lasagne.objectives.binary_crossentropy(fake_out, 0)).mean() # Gradients penalty norm if GP_norm is True: alpha = t_rng.uniform((batchSize, 1), low=0., high=1.) differences = fake_imgs - real_imgs interpolates = real_imgs + (alpha * differences) gradients = theano.grad(lasagne.layers.get_output( discriminator, interpolates).sum(), wrt=interpolates) slopes = T.sqrt(T.sum(T.sqr(gradients), axis=(1))) gradient_penalty = T.mean((slopes - 1.)**2) D_loss = discriminator_loss + LAMBDA * gradient_penalty b1_d = 0. else: D_loss = discriminator_loss b1_d = 0. # Create update expressions for training discriminator_params = lasagne.layers.get_all_params(discriminator, trainable=True) lrtd = theano.shared(lasagne.utils.floatX(lrd)) updates_d = lasagne.updates.adam(D_loss, discriminator_params, learning_rate=lrtd, beta1=b1_d) lrt = theano.shared(lasagne.utils.floatX(lr)) # Fd Socre Fd = theano.gradient.grad(discriminator_loss, discriminator_params) Fd_score = beta * T.log(sum(T.sum(T.sqr(x)) for x in Fd)) # Compile a function performing a training step on a mini-batch (by giving # the updates dictionary) and returning the corresponding training loss: train_d = theano.function([real_imgs, fake_imgs], discriminator_loss, updates=updates_d) # Compile another function generating some data dis_fn = theano.function([real_imgs, fake_imgs], [(fake_out).mean(), Fd_score]) disft_fn = theano.function([real_imgs, fake_imgs], [ real_out.mean(), fake_out.mean(), (real_out > 0.5).mean(), (fake_out > 0.5).mean(), Fd_score ]) # Finally, launch the training loop. print("Starting training...") desc = task + '_' + name print(desc) if not os.path.isdir('logs'): os.mkdir(os.path.join('logs')) f_log = open('logs/%s.ndjson' % desc, 'wb') if not os.path.isdir('models'): os.mkdir(os.path.join('models/')) if not os.path.isdir('models/' + desc): os.mkdir(os.path.join('models/', desc)) gen_new_params = [] # We iterate over epochs: for n_updates in range(N_up): xmb = toy_dataset(DATASET=DATASET, size=batchSize * kD) xmb = xmb[0:batchSize * kD] # initial G cluster if n_updates == 0: for can_i in range(0, ncandi): train_g, gen_fn, generator = create_G( loss_type=loss_type[can_i % nloss], discriminator=discriminator, lr=lr, b1=b1, DIM=DIM) for _ in range(0, kG): zmb = floatX(np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g(zmb) sample_zmb = floatX(np_rng.uniform(-1., 1., size=(ntf, nz))) gen_imgs = gen_fn(sample_zmb) gen_new_params.append( lasagne.layers.get_all_param_values(generator)) if can_i == 0: g_imgs_old = gen_imgs fmb = gen_imgs[0:int(batchSize / ncandi * kD), :] else: g_imgs_old = np.append(g_imgs_old, gen_imgs, axis=0) newfmb = gen_imgs[0:int(batchSize / ncandi * kD), :] fmb = np.append(fmb, newfmb, axis=0) # print gen_new_params # MODEL G noise = T.matrix('noise') generator = models_uncond.build_generator_toy(noise, nd=DIM) Tgimgs = lasagne.layers.get_output(generator) Tfake_out = lasagne.layers.get_output(discriminator, Tgimgs) g_loss_logD = lasagne.objectives.binary_crossentropy(Tfake_out, 1).mean() g_loss_minimax = - \ lasagne.objectives.binary_crossentropy(Tfake_out, 0).mean() g_loss_ls = T.mean(T.sqr((Tfake_out - 1))) g_params = lasagne.layers.get_all_params(generator, trainable=True) up_g_logD = lasagne.updates.adam(g_loss_logD, g_params, learning_rate=lrt, beta1=b1) up_g_minimax = lasagne.updates.adam(g_loss_minimax, g_params, learning_rate=lrt, beta1=b1) up_g_ls = lasagne.updates.adam(g_loss_ls, g_params, learning_rate=lrt, beta1=b1) train_g = theano.function([noise], g_loss_logD, updates=up_g_logD) train_g_minimax = theano.function([noise], g_loss_minimax, updates=up_g_minimax) train_g_ls = theano.function([noise], g_loss_ls, updates=up_g_ls) gen_fn = theano.function([noise], lasagne.layers.get_output( generator, deterministic=True)) else: class Instance: def __init__(self, fq, fd, params, img_values, image_copy): self.fq = fq self.fd = fd self.params = params self.vimg = img_values self.cimg = image_copy def f(self): return self.fq - self.fd instances = [] fq_list = np.zeros(ncandi) fd_list = np.zeros(ncandi) gen_old_params = gen_new_params for can_i in range(0, ncandi): for type_i in range(0, nloss): lasagne.layers.set_all_param_values( generator, gen_old_params[can_i]) if loss_type[type_i] == 'trickLogD': for _ in range(0, kG): zmb = floatX( np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g(zmb) elif loss_type[type_i] == 'minimax': for _ in range(0, kG): zmb = floatX( np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g_minimax(zmb) elif loss_type[type_i] == 'ls': for _ in range(0, kG): zmb = floatX( np_rng.uniform(-1., 1., size=(batchSize, nz))) cost = train_g_ls(zmb) sample_zmb = floatX(np_rng.uniform(-1., 1., size=(ntf, nz))) gen_imgs = gen_fn(sample_zmb) frr_score, fd_score = dis_fn(xmb[0:ntf], gen_imgs) instances.append( Instance( frr_score, fd_score, lasagne.layers.get_all_param_values(generator), gen_imgs, gen_imgs[0:int(batchSize / ncandi * kD), :])) if ncandi < len(instances): if NSGA2 == True: cromos = { idx: [float(inst.fq), -float(inst.fd)] for idx, inst in enumerate(instances) } cromos_idxs = [idx for idx, _ in enumerate(instances)] finalpop = nsga_2_pass(ncandi, cromos, cromos_idxs) for idx, p in enumerate(finalpop): inst = instances[p] gen_new_params[idx] = inst.params fq_list[idx] = inst.fq fd_list[idx] = inst.fd fake_rate[idx] = inst.f() g_imgs_old[idx * ntf:(idx + 1) * ntf, :] = inst.vimg fmb[int(idx * batchSize / ncandi * kD):math.ceil((idx + 1) * batchSize / ncandi * kD), :] = inst.cimg with open('front/%s.tsv' % desc, 'wb') as ffront: for idx, p in enumerate(finalpop): inst = instances[p] ffront.write( (str(inst.fq) + "\t" + str(inst.fd)).encode()) ffront.write("\n".encode()) else: for idx, inst in enumerate(instances): if idx < ncandi: gen_new_params[idx] = inst.params fake_rate[idx] = inst.f() fq_list[idx] = inst.fq fd_list[idx] = inst.fd g_imgs_old[idx * ntf:(idx + 1) * ntf, :] = inst.vimg fmb[int(idx * batchSize / ncandi * kD):math.ceil((idx + 1) * batchSize / ncandi * kD), :] = inst.cimg else: fr_com = fake_rate - inst.f() if min(fr_com) < 0: idr = np.where(fr_com == min(fr_com))[0][0] gen_new_params[idr] = inst.params fake_rate[idr] = inst.f() g_imgs_old[idr * ntf:(idr + 1) * ntf, :] = inst.vimg fmb[int(idr * batchSize / ncandi * kD):math.ceil((idr + 1) * batchSize / ncandi * kD), :] = inst.cimg sample_xmb = toy_dataset(DATASET=DATASET, size=ncandi * ntf) sample_xmb = sample_xmb[0:ncandi * ntf] for i in range(0, ncandi): xfake = g_imgs_old[i * ntf:(i + 1) * ntf, :] xreal = sample_xmb[i * ntf:(i + 1) * ntf, :] tr, fr, trp, frp, fdscore = disft_fn(xreal, xfake) if i == 0: fake_rate = np.array([fr]) real_rate = np.array([tr]) fake_rate_p = np.array([frp]) real_rate_p = np.array([trp]) FDL = np.array([fdscore]) else: fake_rate = np.append(fake_rate, fr) real_rate = np.append(real_rate, tr) fake_rate_p = np.append(fake_rate_p, frp) real_rate_p = np.append(real_rate_p, trp) FDL = np.append(FDL, fdscore) print(fake_rate, fake_rate_p, FDL) print(n_updates, real_rate.mean(), real_rate_p.mean()) f_log.write((str(fake_rate) + ' ' + str(fake_rate_p) + '\n' + str(n_updates) + ' ' + str(real_rate.mean()) + ' ' + str(real_rate_p.mean()) + '\n').encode()) f_log.flush() # train D for xreal, xfake in iter_data(xmb, shuffle(fmb), size=batchSize): cost = train_d(xreal, xfake) if n_updates % show_freq == 0: s_zmb = floatX(np_rng.uniform(-1., 1., size=(512, nz))) params_max = gen_new_params[np.argmax(fake_rate)] lasagne.layers.set_all_param_values(generator, params_max) g_imgs_max = gen_fn(s_zmb) if n_updates % show_freq == 0 and n_updates != 0: #metric s_zmb = floatX(np_rng.uniform(-1., 1., size=(512, nz))) xmb = toy_dataset(DATASET=DATASET, size=512) mmd2_all = [] for i in range(0, ncandi): lasagne.layers.set_all_param_values(generator, gen_new_params[i]) g_imgs_min = gen_fn(s_zmb) mmd2_all.append(compute_metric_mmd2(g_imgs_min, xmb)) mmd2_all = np.array(mmd2_all) if NSGA2: with open('front/%s_mmd2u.tsv' % desc, 'wb') as ffront: for idx in range(0, ncandi): ffront.write( (str(fq_list[idx]) + "\t" + str(fd_list[idx]) + "\t" + str(mmd2_all[idx])).encode()) ffront.write("\n".encode()) #save best params = gen_new_params[np.argmin(mmd2_all)] lasagne.layers.set_all_param_values(generator, params) g_imgs_min = gen_fn(s_zmb) generate_image(xmb, g_imgs_min, n_updates / save_freq, desc, postfix="_mmu2d") np.savez('models/%s/gen_%d.npz' % (desc, n_updates / save_freq), *lasagne.layers.get_all_param_values(discriminator)) np.savez('models/%s/dis_%d.npz' % (desc, n_updates / save_freq), *lasagne.layers.get_all_param_values(generator))
def statistic_datas(self, fakeset): sample_xmb = toy_dataset(DATASET=self.name, size=self.batchSize) return sample_xmb[0:self.batchSize, :], fakeset[0:self.batchSize, :]