def setup(self, bottom, top): self._batch_size = 1 self._depth = 8 self._height = 240 self._width = 320 self.dataset = jhmdb('train', [self._height, self._width], split=1) self.anchors, _, _ = self.dataset.get_anchors() self.num_boxes = 64
def __init__(self): self._batch_size = 1 self._depth = 8 self._height = 240 self._width = 320 self.dataset = jhmdb('trainval', [self._height, self._width], split=1) self.anchors, self.valid_idx, self._anchor_dims = self.dataset.get_anchors( )
def __init__(self, net, model): self._batch_size = 1 self._depth = 8 self._height = 300 self._width = 400 self.dataset = jhmdb('val', [self._height, self._width], split=1) caffe.set_mode_gpu() self._net = caffe.Net(net, model, caffe.TEST)
def setup(self, bottom, top): self._batch_size = 1 self._depth = 8 self._height = 300 self._width = 400 self.dataset = jhmdb('val', [self._height, self._width], split=1) self.num_classes = self.dataset._num_classes - 1 self.anchors, self.valid_idx, self._anchor_dims = self.dataset.get_anchors( )
def __init__(self, net, model): self._batch_size = 1 self._depth = 8 self._height = 240 self._width = 320 self.dataset = jhmdb('val', [self._height, self._width], split=1) self.anchors, self.valid_idx, self._anchor_dims = self.dataset.get_anchors() caffe.set_mode_gpu() self._net = caffe.Net(net, model, caffe.TEST)
def __init__(self, net, model): self._batch_size = 1 self._depth = 8 self._height = 240 self._width = 320 self.dataset = jhmdb('val', [self._height, self._width], split=1) #选取测试集,[height, width] = clip_shape self.anchors, self.valid_idx, self._anchor_dims = self.dataset.get_anchors( ) #获取测试集anchors,valid_idx有效idx caffe.set_mode_gpu() self._net = caffe.Net(net, model, caffe.TEST) #网络前传
def __init__(self, net, model): self._batch_size = 1 self._depth = 8 self._height = 300 self._width = 400 self._num_anchors = 10 self.dataset = jhmdb('train', [self._height, self._width], split=1) self.base_anchors = np.load( '/data/wjc/thumos14/cache/anchors_{}_{}.npy'.format( self._depth, self._num_anchors)).transpose() self._bottom_height = np.ceil(self._height / 16.0) self._bottom_width = np.ceil(self._width / 16.0) self._bottom_width = np.ceil(self._width / 16.0) shift_x = np.arange(0, self._bottom_width) shift_y = np.arange(0, self._bottom_height) shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = self._num_anchors K = shifts.shape[0] all_anchors = (self.base_anchors.reshape((1, A, 4)) + shifts.reshape( (1, K, 4)).transpose((1, 0, 2))) all_anchors = all_anchors.reshape((K * A, 4)) total_anchors = int(K * A) # only keep anchors inside the image inds_inside = np.where( (all_anchors[:, 0] >= 0) & (all_anchors[:, 1] >= 0) & (all_anchors[:, 2] < self._bottom_width) & # width (all_anchors[:, 3] < self._bottom_width) # height )[0] self.anchors = all_anchors[inds_inside, :] caffe.set_mode_gpu() self._net = caffe.Net(net, model, caffe.TEST) self._list = []
from dataset.jhmdb import jhmdb j = jhmdb(name='train', clip_shape=[240, 320], split=1) for i in xrange(4, 17): j.cluster_bboxes(anchors=i)