def __init__(self, embedding, batch_size): TEXT, vocab_size, word_embeddings, self.train_iter, self.valid_iter, self.test_iter = load_dataset.load(embedding=embedding, batch_size=batch_size) self.embedding = embedding output_size = 10 learning_rate = 2e-5 self.model = LogisticRegressionModel(output_size, vocab_size, 300, word_embeddings) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), weight_decay=0.0005, lr=0.0001) loss_fn = F.cross_entropy self.training_handler = TrainingHandler(optimizer, loss_fn, batch_size)
def __init__(self, embedding, batch_size): TEXT, vocab_size, word_embeddings, self.train_iter, self.valid_iter, self.test_iter = load_dataset.load( embedding=embedding, batch_size=batch_size) self.embedding = embedding output_size = 10 hidden_size = 256 embedding_length = 300 self.model = LSTMClassifier(batch_size, output_size, hidden_size, vocab_size, embedding_length, word_embeddings) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), weight_decay=0.0005, lr=0.0001) loss_fn = F.cross_entropy self.training_handler = TrainingHandler(optimizer, loss_fn, batch_size)
def __init__(self, embedding, batch_size): TEXT, vocab_size, word_embeddings, self.train_iter, self.valid_iter, self.test_iter = load_dataset.load( embedding=embedding, batch_size=batch_size) self.embedding = embedding output_size = 10 in_channel = 1 out_channel = 16 kernel_heights = [3, 5, 7] keep_probab = 0 stride = 1 padding = [1, 2, 3] embedding_length = 300 self.model = CNN(batch_size, output_size, in_channel, out_channel, kernel_heights, stride, padding, keep_probab, vocab_size, embedding_length, word_embeddings) optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, self.model.parameters()), weight_decay=0.0005, lr=0.0001) loss_fn = F.cross_entropy self.training_handler = TrainingHandler(optimizer, loss_fn, batch_size)