Exemple #1
0
        def handle(clientsocket):
            # while 1:
            cmd = clientsocket.recv(MAX_LENGTH)
            print cmd
            if args.mode == 'dataset':
                try:
                    example_id = int(cmd)
                    example = [
                        e for e in test_data.examples if e.raw_id == example_id
                    ][0]
                except:
                    print 'something went wrong ...'
                    # continue
            elif args.mode == 'new':
                # we play with new examples!
                query, str_map = canonicalize_query(cmd)
                vocab = train_data.annot_vocab
                query_tokens = query.split(' ')
                query_tokens_data = [query_to_data(query, vocab)]
                example = namedtuple('example',
                                     ['query', 'data'])(query=query_tokens,
                                                        data=query_tokens_data)

            if hasattr(example, 'parse_tree'):
                print 'gold parse tree:'
                print example.parse_tree

            cand_list = model.decode(example,
                                     train_data.grammar,
                                     train_data.terminal_vocab,
                                     beam_size=args.beam_size,
                                     max_time_step=args.decode_max_time_step,
                                     log=True)

            has_grammar_error = any(
                [c for c in cand_list if c.has_grammar_error])
            print 'has_grammar_error: ', has_grammar_error

            for cid, cand in enumerate(cand_list[:5]):
                print '*' * 60
                print 'cand #%d, score: %f' % (cid, cand.score)

                try:
                    ast_tree = decode_tree_to_python_ast(cand.tree)
                    code = astor.to_source(ast_tree)
                    print 'code: ', code
                    print 'decode log: ', cand.log
                except:
                    print "Exception in converting tree to code:"
                    print '-' * 60
                    print 'raw_id: %d, beam pos: %d' % (example.raw_id, cid)
                    traceback.print_exc(file=sys.stdout)
                    print '-' * 60
                finally:
                    print '* parse tree *'
                    print cand.tree.__repr__()
                    print 'n_timestep: %d' % cand.n_timestep
                    print 'ast size: %d' % cand.tree.size
                    print '*' * 60
def decode_query(query):
    """decode a given natural language query, return a list of generated candidates"""
    query, str_map = canonicalize_query(query)
    vocab = train_data.annot_vocab
    query_tokens = query.split(' ')
    query_tokens_data = [query_to_data(query, vocab)]
    example = namedtuple('example', ['query', 'data'])(query=query_tokens, data=query_tokens_data)

    cand_list = model.decode(example, train_data.grammar, train_data.terminal_vocab,
                             beam_size=args.beam_size, max_time_step=args.decode_max_time_step, log=True)

    return cand_list
def decode_query(query):
    """decode a given natural language query, return a list of generated candidates"""
    query, str_map = canonicalize_query(query)
    vocab = train_data.annot_vocab
    query_tokens = query.split(' ')
    query_tokens_data = [query_to_data(query, vocab)]
    example = namedtuple('example', ['query', 'data'])(query=query_tokens,
                                                       data=query_tokens_data)

    cand_list = model.decode(example,
                             train_data.grammar,
                             train_data.terminal_vocab,
                             beam_size=args.beam_size,
                             max_time_step=args.decode_max_time_step,
                             log=True)

    return cand_list
Exemple #4
0
        assert model is not None

        while True:
            cmd = raw_input('example id or query: ')
            if args.mode == 'dataset':
                try:
                    example_id = int(cmd)
                    example = [
                        e for e in test_data.examples if e.raw_id == example_id
                    ][0]
                except:
                    print 'something went wrong ...'
                    continue
            elif args.mode == 'new':
                # we play with new examples!
                query, str_map = canonicalize_query(cmd)
                print 'Query :', query
                vocab = train_data.annot_vocab
                query_tokens = query.split(' ')
                query_tokens_data = [query_to_data(query, vocab)]
                example = namedtuple('example',
                                     ['query', 'data'])(query=query_tokens,
                                                        data=query_tokens_data)

            if hasattr(example, 'parse_tree'):
                print 'gold parse tree:'
                print example.parse_tree

            cand_list = model.decode(example,
                                     train_data.grammar,
                                     train_data.terminal_vocab,
Exemple #5
0
        assert model is not None

        while True:
            cmd = raw_input('example id or query: ')
            if args.mode == 'dataset':
                try:
                    example_id = int(cmd)
                    example = [
                        e for e in test_data.examples if e.raw_id == example_id
                    ][0]
                except:
                    print 'something went wrong ...'
                    continue
            elif args.mode == 'new':
                # we play with new examples!
                query, str_map = canonicalize_query(cmd)
                vocab = train_data.annot_vocab
                query_tokens = query.split(' ')
                query_tokens_data = [query_to_data(query, vocab)]
                example = namedtuple('example',
                                     ['query', 'data'])(query=query_tokens,
                                                        data=query_tokens_data)

            if hasattr(example, 'parse_tree'):
                print 'gold parse tree:'
                print example.parse_tree

            cand_list = model.decode(example,
                                     train_data.grammar,
                                     train_data.terminal_vocab,
                                     beam_size=args.beam_size,
Exemple #6
0
        from collections import namedtuple
        from lang.py.parse import decode_tree_to_python_ast
        assert model is not None

        while True:
            cmd = raw_input('example id or query: ')
            if args.mode == 'dataset':
                try:
                    example_id = int(cmd)
                    example = [e for e in test_data.examples if e.raw_id == example_id][0]
                except:
                    print 'something went wrong ...'
                    continue
            elif args.mode == 'new':
                # we play with new examples!
                query, str_map = canonicalize_query(cmd)
                vocab = train_data.annot_vocab
                query_tokens = query.split(' ')
                query_tokens_data = [query_to_data(query, vocab)]
                example = namedtuple('example', ['query', 'data'])(query=query_tokens, data=query_tokens_data)

            if hasattr(example, 'parse_tree'):
                print 'gold parse tree:'
                print example.parse_tree

            cand_list = model.decode(example, train_data.grammar, train_data.terminal_vocab,
                                     beam_size=args.beam_size, max_time_step=args.decode_max_time_step, log=True)

            has_grammar_error = any([c for c in cand_list if c.has_grammar_error])
            print 'has_grammar_error: ', has_grammar_error