Exemple #1
0
def main():
    # parse options
    parser = TestOptions()
    opts = parser.parse()

    # data loader
    print('\n--- load dataset ---')
    datasetA = dataset_single(opts, 'A', opts.input_dim_a)
    datasetB = dataset_single(opts, 'B', opts.input_dim_b)
    if opts.a2b:
        loader = torch.utils.data.DataLoader(datasetA,
                                             batch_size=1,
                                             num_workers=opts.nThreads)
        loader_attr = torch.utils.data.DataLoader(datasetB,
                                                  batch_size=1,
                                                  num_workers=opts.nThreads,
                                                  shuffle=True)
    else:
        loader = torch.utils.data.DataLoader(datasetB,
                                             batch_size=1,
                                             num_workers=opts.nThreads)
        loader_attr = torch.utils.data.DataLoader(datasetA,
                                                  batch_size=1,
                                                  num_workers=opts.nThreads,
                                                  shuffle=True)

    # model
    print('\n--- load model ---')
    model = DRIT(opts)
    model.setgpu(opts.gpu)
    model.resume(opts.resume, train=False)
    model.eval()

    # directory
    result_dir = os.path.join(opts.result_dir, opts.name)
    if not os.path.exists(result_dir):
        os.mkdir(result_dir)

    # test
    print('\n--- testing ---')
    for idx1, img1 in enumerate(loader):
        print('{}/{}'.format(idx1, len(loader)))
        img1 = img1.cuda(opts.gpu)
        imgs = [img1]
        names = ['input']
        for idx2, img2 in enumerate(loader_attr):
            if idx2 == opts.num:
                break
            img2 = img2.cuda(opts.gpu)
            with torch.no_grad():
                if opts.a2b:
                    img = model.test_forward_transfer(img1, img2, a2b=True)
                else:
                    img = model.test_forward_transfer(img2, img1, a2b=False)
            imgs.append(img)
            names.append('output_{}'.format(idx2))
        save_imgs(imgs, names, os.path.join(result_dir, '{}'.format(idx1)))

    return
Exemple #2
0
def main():
    # parse options
    parser = TestOptions()
    opts = parser.parse()

    # data loader
    print('\n--- load dataset ---')
    if opts.a2b:
        dataset = dataset_single(opts, 'A', opts.input_dim_a)
    else:
        dataset = dataset_single(opts, 'B', opts.input_dim_b)
    loader = torch.utils.data.DataLoader(dataset,
                                         batch_size=1,
                                         num_workers=opts.nThreads)

    # model
    print('\n--- load model ---')
    model = DivCo_DRIT(opts)
    model.setgpu(opts.gpu)
    model.resume(opts.resume, train=False)
    model.eval()

    # directory
    result_dir = os.path.join(opts.result_dir, opts.name)
    if not os.path.exists(result_dir):
        os.mkdir(result_dir)

    # test
    print('\n--- testing ---')
    ep_name = opts.resume.split('/')[-1].split('.')[0]
    for idx1, (img1, name1) in enumerate(loader):
        print('{}/{}'.format(idx1, len(loader)))
        img1 = img1.cuda()
        imgs = [img1]
        names = ['input']
        for idx2 in range(opts.num):
            with torch.no_grad():
                if opts.random:
                    img = model.test_forward(img1, a2b=opts.a2b)
                else:
                    latent = float(idx2) / (opts.num - 1) * 2 - 1
                    img = model.test_givenz_forward(img1, latent, a2b=opts.a2b)
            imgs.append(img)
            names.append('output_{}'.format(idx2))
        save_imgs(
            imgs, names,
            os.path.join(
                result_dir, 'test_ep{}_num{}_a2b{}_random{}'.format(
                    ep_name, opts.num, opts.a2b, int(opts.random)),
                name1[0].split('.')[0]))

    return
Exemple #3
0
def main():
  # parse options
  parser = TestOptions()
  opts = parser.parse()

  # data loader
  print('\n--- load dataset ---')
  if opts.a2b:
    dataset = dataset_single(opts, 'A', opts.input_dim_a)
    subdir = "a2b"
  else:
    dataset = dataset_single(opts, 'B', opts.input_dim_b)
    subdir = "b2a"
  loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=opts.nThreads)

  # model
  print('\n--- load model ---')
  model = DRIT(opts)
  model.setgpu(opts.gpu)
  model.resume(opts.resume, train=False)
  model.eval()

  # directory
  result_dir = os.path.join(opts.result_dir, opts.name, subdir)
  if not os.path.exists(result_dir):
    os.makedirs(result_dir)

  # test
  print('\n--- testing ---')
  for idx1, img1 in enumerate(loader):
    print('{}/{}'.format(idx1, len(loader)))
    img1 = img1.cuda()
    imgs = [img1]
    names = ['input']
    for idx2 in range(opts.num):
      with torch.no_grad():
        img = model.test_forward(img1, a2b=opts.a2b)
      imgs.append(img)
      names.append('output_{}'.format(idx2))
    save_imgs(imgs, names, os.path.join(result_dir, '{}'.format(idx1)))

  return
def main():
    # parse options
    parser = TestOptions()
    opts = parser.parse()

    # data loader
    print('\n--- load dataset ---')
    datasetA = dataset_single(opts, 'A', opts.input_dim_a)
    datasetB = dataset_single(opts, 'B', opts.input_dim_b)
    if opts.a2b:
        loader = torch.utils.data.DataLoader(datasetA,
                                             batch_size=1,
                                             num_workers=opts.nThreads)
        loader_attr = torch.utils.data.DataLoader(datasetB,
                                                  batch_size=1,
                                                  num_workers=opts.nThreads,
                                                  shuffle=True)
    else:
        loader = torch.utils.data.DataLoader(datasetB,
                                             batch_size=1,
                                             num_workers=opts.nThreads)
        loader_attr = torch.utils.data.DataLoader(datasetA,
                                                  batch_size=1,
                                                  num_workers=opts.nThreads,
                                                  shuffle=True)

    # model
    print('\n--- load model ---')
    model = DRIT(opts)
    model.setgpu(opts.gpu)
    model.resume(opts.resume, train=False)
    model.eval()

    # directory
    result_dir = os.path.join(opts.result_dir, opts.name)
    if not os.path.exists(result_dir):
        os.mkdir(result_dir)

    # test
    print('\n--- testing ---')
    for idx1, (img1, img1_path) in enumerate(loader):
        print('{}/{}'.format(idx1, len(loader)))
        img1_path = img1_path[0]
        img1_prefix = os.path.basename(img1_path).split('.')[0]
        #    print('img1_prefix:', img1_prefix)
        img1 = img1.cuda()
        imgs = [img1]
        #    print('img1 type:', type(img1))
        names = [f'{img1_prefix}_input']
        for idx2, (img2, img2_path) in enumerate(loader_attr):
            img2_path = img2_path[0]
            img2_prefix = os.path.basename(img2_path).split('.')[0]
            #      print('img2_prefix:', img2_prefix)
            if img1_prefix == img2_prefix:
                img2 = img2.cuda()
                imgs.append(img2)
                names.append(f'{img2_prefix}_real')
                #        print('img2 type:', type(img2))
                with torch.no_grad():
                    if opts.a2b:
                        img = model.test_forward_transfer(img1, img2, a2b=True)
                    else:
                        img = model.test_forward_transfer(img2,
                                                          img1,
                                                          a2b=False)
                imgs.append(img)
                names.append(f'{img2_prefix}_fake')
                break
        save_imgs(imgs, names, result_dir)

    return
Exemple #5
0
def main():
    # parse options
    opt = TestOptions().parse()
    opt.num_threads = 0  # test code only supports num_threads = 1
    opt.batch_size = 1  # test code only supports batch_size = 1
    opt.serial_batches = True  # disable data shuffling; comment this line if results on randomly chosen images are needed.
    opt.no_flip = True  # no flip; comment this line if results on flipped images are needed.
    opt.display_id = -1  # no visdom display; the test code saves the results to a HTML file.

    # data loader
    print('\n--- load dataset ---')
    #if opt.a2b:
    dataset = dataset_single(opt, 'A')
    #else:
    #dataset = dataset_single(opt, 'B')
    loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=8)

    file_name = opt.fid
    data_mu = np.load(file_name)['mu']
    data_sigma = np.load(file_name)['sigma']

    # Load inception net
    print('\n--- load inception net ---')
    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
    model_inception = InceptionV3([block_idx]).cuda()
    model_inception.eval()  # set to eval mode

    ## Initializing the AlexNet model
    model_alexnet = modelss.PerceptualLoss(model='net-lin',
                                           net='alex',
                                           use_gpu=True)

    transform = torchvision.transforms.Compose([
        torchvision.transforms.ToPILImage(),
        torchvision.transforms.Resize(64),
        torchvision.transforms.ToTensor()
    ])

    # Load pre-trained model
    print('\n--- load model ---')
    model = create_model(opt)
    all_files = np.arange(200, 210, 10).tolist()

    torch.manual_seed(8)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    np.random.seed(8)
    test_sample = 1

    for epoch in all_files:
        model.load_networks(epoch)
        model.eval()

        # generate images & accumulate inception activation
        pool1 = []
        pool2 = []
        dists = []

        for idx1, img1 in enumerate(loader):
            img = img1.cuda()
            imgs = [img]
            names = ['input']

            with torch.no_grad():
                img = model.test_forward(img, a2b=True)
                imgs = [img]
                imgss = []
                # accumulate inception activation for FID1
                assert (torch.max(img) <= 1.0 and torch.min(img) >= -1.0)
                pool_val = model_inception(img)[0]  # bs x 2048 x 1 x 1
                assert (pool_val.size(1) == 2048 and pool_val.size(2) == 1
                        and pool_val.size(3) == 1)
                pool_val = pool_val.squeeze()
                pool1 += [np.asarray(pool_val.cpu())]

                for i in range(1):
                    img = model.test_forward(img, a2b=False)
                    img = model.test_forward(img, a2b=True)
                    imgs += [img]

                # accumulate inception activation for FID2
                assert (torch.max(img) <= 1.0 and torch.min(img) >= -1.0)
                pool_val = model_inception(img)[0]  # bs x 2048 x 1 x 1
                assert (pool_val.size(1) == 2048 and pool_val.size(2) == 1
                        and pool_val.size(3) == 1)
                pool_val = pool_val.squeeze()
                pool2 += [np.asarray(pool_val.cpu())]

                # test lpips on 4 (1+1+2) generated images
                for i in range(2):
                    img = model.test_forward(img, a2b=False)
                    img = model.test_forward(img, a2b=True)
                    imgs += [img]
                for i in imgs:
                    imgss.append(transform(i[0].cpu()).cuda())
                dist = compute_lpips(imgss, model_alexnet)
                dists.append(dist)

        # compute fid score
        lpips_score = sum(dists) / len(dists)
        print('LPIPS score for epoch %d is %f ' % (epoch, lpips_score))
        pool1 = np.vstack(pool1)
        mu, sigma = np.mean(pool1, axis=0), np.cov(pool1, rowvar=False)
        FID1 = inception_utils.numpy_calculate_frechet_distance(
            mu, sigma, data_mu, data_sigma)
        print('FID1 score for epoch %d is %f ' % (epoch, FID1))
        pool2 = np.vstack(pool2)
        mu, sigma = np.mean(pool2, axis=0), np.cov(pool2, rowvar=False)
        FID2 = inception_utils.numpy_calculate_frechet_distance(
            mu, sigma, data_mu, data_sigma)
        print('FID2 score for epoch %d is %f ' % (epoch, FID2))
def main():
    
    # parse options
    parser = TestOptions()
    opts = parser.parse()
    result_dir = os.path.join(opts.result_dir, opts.name)
    orig_dir = opts.orig_dir
    blur_dir = opts.dataroot

    if not os.path.exists(result_dir):
        os.mkdir(result_dir)

    # data loader
    print('\n--- load dataset ---')
    if opts.a2b:
        dataset = dataset_single(opts, 'A', opts.input_dim_a)
    else:
        dataset = dataset_single(opts, 'B', opts.input_dim_b)
    loader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=opts.nThreads)

    # model
    print('\n--- load model ---')
    model = UID(opts)
    model.setgpu(opts.gpu)
    model.resume(opts.resume, train=False)
    model.eval()

    # test
    print('\n--- testing ---')
    for idx1, (img1,img_name) in enumerate(loader):
        print('{}/{}'.format(idx1, len(loader)))
        img1 = img1.cuda(opts.gpu).detach()
        with torch.no_grad():
            img = model.test_forward(img1, a2b=opts.a2b)
        img_name = img_name[0].split('/')
        img_name = img_name[-1]
        save_imgs(img, img_name, result_dir)
  
     # evaluate metrics
    if opts.percep == 'default':
        pLoss = PerceptualLoss(nn.MSELoss(),p_layer=36)
    elif opts.percep == 'face':
        self.perceptualLoss = networks.PerceptualLoss16(nn.MSELoss(),p_layer=30)
    else:
        self.perceptualLoss = networks.MultiPerceptualLoss(nn.MSELoss())
    
    orig_list = sorted(os.listdir(orig_dir))
    deblur_list = sorted(os.listdir(result_dir)) 
    blur_list = sorted(os.listdir(blur_dir)) 
    
    psnr = []
    ssim = []
    percp = []
    blur_psnr = []
    blur_ssim = []
    blur_percp = []

    for (deblur_img_name, orig_img_name, blur_img_name) in zip(deblur_list, orig_list, blur_list):
        deblur_img_name = os.path.join(result_dir,deblur_img_name)
        orig_img_name = os.path.join(orig_dir,orig_img_name)
        blur_img_name = os.path.join(blur_dir, blur_img_name)
        deblur_img = imread(deblur_img_name)
        orig_img = imread(orig_img_name)
        blur_img = imread(blur_img_name)
        try:
            psnr.append(PSNR(deblur_img, orig_img))
            ssim.append(SSIM(deblur_img, orig_img, multichannel=True))
            blur_psnr.append(PSNR(blur_img, orig_img))
            blur_ssim.append(SSIM(blur_img, orig_img, multichannel=True))
        except ValueError:
            print(orig_img_name)
        
        with torch.no_grad():
            temp = pLoss.getloss(deblur_img,orig_img)
            temp2 = pLoss.getloss(blur_img,orig_img)
        percp.append(temp)
        blur_percp.append(temp2)
        
    print(sum(psnr)/len(psnr))
    print(sum(ssim)/len(ssim))
    print(sum(percp)/len(percp))
    
    print(sum(blur_psnr)/len(psnr))
    print(sum(blur_ssim)/len(ssim))
    print(sum(blur_percp)/len(percp))
    return