pygame.display.set_caption("Hand written digits predictor") # width and height of each of cells in the grid width, height = 20, 20 w = 7 h = 7 # margin of the grid margin = 5 # grid grid = np.zeros((w, h)) net = [Adaline(w*h,0.1,1000) for _ in range(10)] num = train_data() for i in range(10): net[i].train(num, labels(i)) # main loop while True: screen.fill(pygame.Color("black")) for event in pygame.event.get(): if event.type == pygame.QUIT: exit(0) elif event.type == pygame.MOUSEBUTTONDOWN: pos = pygame.mouse.get_pos() print('Current possition of the mouse {}'.format(pos)) column = pos[0] // (width + margin) row = pos[1] // (height + margin)
def main(): print("Please run net.py!") return parser = argparse.ArgumentParser(description='Make everything 3D') parser.add_argument('--batch-size', dest='batch_size', help='Batch size', default=120, type=int) parser.add_argument('--iter', dest='iter', help='Number of iterations', default=1000, type=int) parser.add_argument('--weights', dest='weights', help='Pre-trained weights', default=None) args = parser.parse_args() print('Called with args:', args) with tf.name_scope("Dataset"): x_train = dataset.train_data() y_train = dataset.train_labels() print("Finished reading dataset.") forward_pass = net.encoder_gru() decoder_pass = net.decoder() logits = decoder_pass prediction = tf.nn.softmax(logits) # Initialize the variables init = tf.global_variables_initializer() # Start training with tf.Session() as sess: # Run the initializer sess.run(init) # Merge all the summaries and write them out to /tmp/mnist_logs (by default) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter('./train', sess.graph) iter = 0 print("Started training.") for image_hash in x_train.keys(): iter += 1 initial_state = tf.zeros_like( tf.truncated_normal( [1, n_gru_vox, n_deconvfilter[0], n_gru_vox, n_gru_vox], stddev=0.5)) initial_state = initial_state.eval() for image in x_train[image_hash]: image = tf.convert_to_tensor(image) image = tf.reshape(image, [1, 127, 127, 3]) image = image.eval() initial_state = sess.run([forward_pass], feed_dict={ X: image, S: initial_state }) vox = tf.convert_to_tensor(y_train[image_hash]) vox = vox.eval() loss, _ = sess.run([loss_op, update_step], feed_dict={ S: initial_state, Y: vox }) print("Image: ", iter, " LOSS: ", loss) tf.summary.histogram('loss', loss) if iter % 2 == 0: print("Testing Model at Iter ", iter) # Save the prediction to an OBJ file (mesh file). net.predict(w, "test_image.png", iter) del x_train del y_train del args del w print("Finished early!") return print("Finished!") del x_train del y_train del args del w
"weights": model.get_weights(), "version": version, "points": x_train.shape[0], "metrics": metrics }) print("Sending update...") aggregator.send_pyobj(_update) print("[{}] Started".format(ip_addr)) my_id = register() print("my_id: %s" % my_id) print("Loading train data...") train_data = dataset.train_data(os.environ["TRAIN_DATA_PATH"], my_id) x_train = train_data["x_train"] y_train = train_data["y_train"] print('x_train shape:', x_train.shape) print(x_train.shape[0], 'train samples') logs = [] while True: notify() model, version, hparam = request() if model is None: continue
optimizer = tf.train.AdamOptimizer(1e-4).minimize(loss) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() with tf.Session() as sess: # sess = tf_debug.TensorBoardDebugWrapperSession(sess, "Berkan-MacBook-Pro.local:4334") # Run the initializer sess.run(init) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter('./train', sess.graph) x_train = dataset.train_data() y_train = dataset.train_labels() i = 0 prev_state = np.zeros([n_gru_vox, n_gru_vox, n_gru_vox, 1, n_deconvfilter[0]]) while (i < num_steps): for image_hash in x_train.keys(): i += 1 # prev_state = np.zeros([n_gru_vox, n_gru_vox, n_gru_vox, 1, n_deconvfilter[0]]) images = x_train[image_hash]
import time import torch from torchvision import models, transforms from torch import optim, nn from torch.autograd import Variable from torchvision.datasets import ImageFolder from torch.utils.data import DataLoader from tensorboardX import SummaryWriter batch_size = 8 epochs = 500 train_root = 'D:\\lhq\\catdog\\train\\' val_root = 'D:\\lhq\\catdog\\val\\' train_dataset = train_data(train_root) val_dataset = val_data(val_root) print() train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=0) val_loader = DataLoader(val_dataset, batch_size=batch_size, shuffle=False, num_workers=0) if torch.cuda.is_available() == True: #net=resnet(3, 2, False).cuda() net = Net().cuda()
def main(): print("Please run net.py!") return parser = argparse.ArgumentParser(description='Make everything 3D') parser.add_argument('--batch-size', dest='batch_size', help='Batch size', default=120, type=int) parser.add_argument('--iter', dest='iter', help='Number of iterations', default=1000, type=int) parser.add_argument('--weights', dest='weights', help='Pre-trained weights', default=None) args = parser.parse_args() print('Called with args:', args) #w = net.initialize_weights() with tf.name_scope("Dataset"): x_train = dataset.train_data() y_train = dataset.train_labels() print("Finished reading dataset.") # TF Graph Input #X = tf.placeholder(tf.float32, shape=[1, 127, 127, 3],name = "Image") #Y = tf.placeholder(tf.float32, shape=[32, 32, 32],name = "Pred") #S = tf.placeholder(tf.float32, shape=[1,n_gru_vox,n_deconvfilter[0],n_gru_vox,n_gru_vox],name = "Hidden_State") #initial_state = tf.Variable(tf.zeros_like( # tf.truncated_normal([1,n_gru_vox,n_deconvfilter[0],n_gru_vox,n_gru_vox], stddev=0.5)), name="initial_state") forward_pass = net.encoder_gru() decoder_pass = net.decoder() logits = decoder_pass prediction = tf.nn.softmax(logits) # Define loss and optimizer #loss_op = net.loss(logits,Y) # Calculate and clip gradients #params = tf.trainable_variables() #gradients = tf.gradients(loss_op, params) #clipped_gradients, _ = tf.clip_by_global_norm( # gradients, 1) # 1 is max_gradient_norm # Optimization #optimizer = tf.train.AdamOptimizer(0.00001) #update_step = optimizer.apply_gradients( # zip(clipped_gradients, params)) # Initialize the variables init = tf.global_variables_initializer() # Start training with tf.Session() as sess: # Run the initializer sess.run(init) # Merge all the summaries and write them out to /tmp/mnist_logs (by default) merged = tf.summary.merge_all() train_writer = tf.summary.FileWriter('./train', sess.graph) iter = 0 print("Started training.") for image_hash in x_train.keys(): iter += 1 initial_state = tf.zeros_like( tf.truncated_normal( [1, n_gru_vox, n_deconvfilter[0], n_gru_vox, n_gru_vox], stddev=0.5)) initial_state = initial_state.eval() for image in x_train[image_hash]: image = tf.convert_to_tensor(image) image = tf.reshape(image, [1, 127, 127, 3]) image = image.eval() #print("XDXDXD") #print(initial_state.shape) initial_state = sess.run([forward_pass], feed_dict={ X: image, S: initial_state }) #initial_state = tf.convert_to_tensor(hidden_state) #initial_state = initial_state.eval() vox = tf.convert_to_tensor(y_train[image_hash]) vox = vox.eval() loss, _ = sess.run([loss_op, update_step], feed_dict={ S: initial_state, Y: vox }) print("Image: ", iter, " LOSS: ", loss) tf.summary.histogram('loss', loss) if iter % 2 == 0: print("Testing Model at Iter ", iter) # Save the prediction to an OBJ file (mesh file). net.predict(w, "test_image.png", iter) del x_train del y_train del args del w print("Finished early!") return print("Finished!") del x_train del y_train del args del w