def load_data(): train_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TRAIN.idx_path, transform=dataset.train_transform(), loader=dataset.val_loader) train_loader = Data.DataLoader(train_data, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, num_workers=cfg.TRAIN.NUM_WORKERS, drop_last=True) val_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TEST.idx_path, transform=dataset.val_transform(), loader=dataset.val_loader) val_loader = Data.DataLoader(val_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=cfg.TRAIN.NUM_WORKERS) train = [train_data, train_loader] val = [val_data, val_loader] return train, val
def create_data_loaders(fold, batch_size, workers): train_ids, val_ids = dataset.get_split(fold) labeled_size = len(train_ids) unlabeled_size = 18000 sampler = dataset.TwoStreamBatchSampler( range(labeled_size), # labeled ids list(range(labeled_size, labeled_size + unlabeled_size)), # unlabeled ids batch_size, # total batch size (labeled + unlabeled) LABELED_BATCH_SIZE # labeled batch size # TODO: was .5 ) train_loader = dataset.DataLoader( dataset=dataset.MeanTeacherTGSDataset( train_ids, transform=dataset.train_transform(), mode='train'), # shuffle=True, num_workers=workers, batch_sampler=sampler, pin_memory=torch.cuda.is_available()) valid_loader = dataset.make_loader( val_ids, transform=dataset.val_transform(), shuffle=False, # batch_size=len(device_ids), batch_size=batch_size, # len(device_ids), workers=workers) return train_loader, valid_loader
def initialize_PN_GAN(): model_path = './G_12.pkl' pn_gan = load_network(model_path) pose_data = dataset.Pose_Loader(pose_path='./poses/', transform=dataset.val_transform(), loader=dataset.val_loader) use_gpu = torch.cuda.is_available() pin_memory = True if use_gpu else False return pn_gan[0], DataLoader(pose_data, batch_size=8, shuffle=False, num_workers=1, pin_memory=pin_memory)
def load_data(samples): val_data = dataset.Market_test(imgs_name=samples, imgs_path=cfg.TEST.imgs_path, pose_path=cfg.TEST.pose_path, transform=dataset.val_transform(), loader=dataset.val_loader) val_loader = Data.DataLoader(val_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=cfg.TEST.BATCH_SIZE) val = [val_data, val_loader] return val
def predict_tta(model, ids, output, kind='test', batch_size=32, n_tta=5): size = dataset.SIZE base_transform = dataset.val_transform() preds = np.zeros((1+n_tta, len(ids), dataset.NUM_CLASSES), dtype=np.float32) preds[0] = predict(model, ids, transform=base_transform, kind=kind, batch_size=batch_size) tta_transform = dataset.train_transform() for tta_idx in range(1, n_tta): preds[tta_idx] = predict(model, ids, transform=tta_transform, kind=kind, batch_size=batch_size) mean_preds = np.mean(preds, axis=0) np.save(output, mean_preds)
def main(): parser = argparse.ArgumentParser() arg = parser.add_argument arg('--name', type=str) arg('--jaccard-weight', default=0.25, type=float) arg('--device-ids', type=str, default='0', help='For example 0,1 to run on two GPUs') arg('--fold', type=int, help='fold', default=0) arg('--output-dir', default='../data/runs', help='checkpoint root') arg('--batch-size', type=int, default=32) arg('--iter-size', type=int, default=1) arg('--n-epochs', type=int, default=100) arg('--lr', type=float, default=0.0001) arg('--workers', type=int, default=4) arg('--seed', type=int, default=0) arg('--model', type=str, default=models.archs[0], choices=models.archs) arg('--loss', type=str, default='focal', choices=[ 'focal', 'lovasz', 'bjd', 'bce_jaccard', 'bce_dice', 'cos_dice', 'hinge' ]) arg('--focal-gamma', type=float, default=.5) arg('--num-channels', type=int, default=3) arg('--weighted-sampler', action="store_true") arg('--ignore-empty-masks', action='store_true') arg('--remove-suspicious', action='store_true') arg('--resume', action="store_true") args = parser.parse_args() random.seed(args.seed) torch.manual_seed(args.seed) if not args.name: experiment = uuid.uuid4().hex else: experiment = args.name output_dir = Path(args.output_dir) / experiment output_dir.mkdir(exist_ok=True, parents=True) output_dir.joinpath('params.json').write_text( json.dumps(vars(args), indent=True, sort_keys=True)) # in case --resume is provided it will be loaded later model = models.get_model(None, args.model) # model = models.get_model(f"../data/runs/exp81/model_{args.fold}.pth", args.model) if torch.cuda.is_available(): if args.device_ids: device_ids = list(map(int, args.device_ids.split(','))) else: device_ids = None model = nn.DataParallel(model, device_ids=device_ids).cuda() train_ids, val_ids = dataset.get_split(args.fold) cudnn.benchmark = True train_loader = dataset.make_loader( train_ids, num_channels=args.num_channels, transform=dataset.train_transform(), shuffle=True, weighted_sampling=args.weighted_sampler, ignore_empty_masks=args.ignore_empty_masks, remove_suspicious=args.remove_suspicious, batch_size=args.batch_size, workers=args.workers) valid_loader = dataset.make_loader( val_ids, num_channels=args.num_channels, transform=dataset.val_transform(), shuffle=False, #batch_size=len(device_ids), batch_size=args.batch_size, # len(device_ids), workers=args.workers) # optimizer = Adam([p for p in model.parameters() if p.requires_grad], lr=args.lr) optimizer = Adam(model.parameters(), lr=args.lr) # loss = LossBinary(jaccard_weight=args.jaccard_weight) # loss = LossBinaryMixedDiceBCE(dice_weight=0.5, bce_weight=0.5) if args.loss == 'focal': loss = FocalLoss(args.focal_gamma) elif args.loss == 'lovasz': loss = LossLovasz() elif args.loss == 'bjd': loss = BCEDiceJaccardLoss({'bce': 0.25, 'jaccard': None, 'dice': 0.75}) elif args.loss == 'bce_jaccard': loss = LossBinary(args.jaccard_weight) elif args.loss == 'bce_dice': import loss2 bce_weight = 1 dice_weight = 2 loss = loss2.make_loss(bce_weight, dice_weight) elif args.loss == 'cos_dice': import loss2 loss = loss2.make_cos_dice_loss() elif args.loss == 'hinge': loss = LossHinge() else: raise NotImplementedError validation = validation_binary scheduler = ReduceLROnPlateau(optimizer, verbose=True, min_lr=1e-7, factor=0.5) snapshot = utils.fold_snapshot(output_dir, args.fold) if args.resume else None utils.train(experiment=experiment, output_dir=output_dir, optimizer=optimizer, args=args, model=model, criterion=loss, scheduler=scheduler, train_loader=train_loader, valid_loader=valid_loader, validation=validation, fold=args.fold, batch_size=args.batch_size, n_epochs=args.n_epochs, snapshot=snapshot, iter_size=args.iter_size)
def main(): args = build_train_args() random.seed(args.seed) torch.manual_seed(args.seed) experiment = args.name if args.name else uuid.uuid4().hex output_dir = Path(args.output_dir) / experiment output_dir.mkdir(exist_ok=True, parents=True) output_dir.joinpath('params.json').write_text( json.dumps(vars(args), indent=True, sort_keys=True)) # this is different than --resume, which loads optimizer state as well initial_model_path = os.path.join( output_dir, f"model_{args.fold}.pth") if args.load_weights else None model = models.get_model(initial_model_path, args.model) train_ids, val_ids = dataset.get_split(args.fold) cudnn.benchmark = True train_loader = dataset.make_loader(train_ids, num_channels=args.num_channels, transform=dataset.train_transform(), shuffle=True, weighted_sampling=args.weighted_sampler, batch_size=args.batch_size, workers=args.workers) valid_loader = dataset.make_loader( val_ids, num_channels=args.num_channels, transform=dataset.val_transform(), shuffle=False, weighted_sampling=False, batch_size=args.batch_size, # len(device_ids), workers=args.workers) # train last layer only # for m in model.children(): # if m in [model.fc]: # continue # for param in m.parameters(): # param.requires_grad = False # set all layers except fc to lr=0 #fc_params = list(map(id, model.fc.parameters())) #base_params = filter(lambda p: id(p) not in fc_params, model.parameters()) #optimizer = torch.optim.Adam([ # {'params': base_params, 'lr': args.lr * 0.001}, # {'params': model.fc.parameters(), 'lr': args.lr} #], lr=args.lr * 0.001) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) # optimizer = torch.optim.SGD(model.parameters(), lr=0.03, momentum=0.9, weight_decay=1e-4) # criterion = FocalLoss(gamma=args.focal_gamma) criterion = nn.BCEWithLogitsLoss().cuda() # criterion = losses.f1_loss validation_fn = validation_multi #scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau( # optimizer, mode='max', verbose=True, min_lr=1e-7, factor=0.5, patience=5) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1) snapshot = utils.fold_snapshot(output_dir, args.fold) if args.resume else None device_ids = list(map( int, args.device_ids.split(','))) if args.device_ids else None wrapped_model = nn.DataParallel(model, device_ids=device_ids).cuda() # unfreeze # for m in model.children(): # for param in m.parameters(): # param.requires_grad = True # fc1_params = list(map(id, model.fc1.parameters())) # fc2_params = list(map(id, model.fc2.parameters())) # base_params = filter(lambda p: id(p) not in fc1_params and id(p) not in fc2_params, model.parameters()) # # # fc at args.lr and rest with args.lr * 0.1 # optimizer = torch.optim.Adam([ # {'params': base_params}, # {'params': model.fc1.parameters(), 'lr': args.lr}, # {'params': model.fc2.parameters(), 'lr': args.lr}, # ], lr=args.lr * 0.1) # aternatively, add the unfrozen fc2 weight to the current optimizer # optimizer.add_param_group({'params': net.fc2.parameters()}) utils.train(experiment=experiment, output_dir=output_dir, optimizer=optimizer, args=args, model=wrapped_model, criterion=criterion, scheduler=scheduler, train_loader=train_loader, valid_loader=valid_loader, validation_fn=validation_fn, fold=args.fold, batch_size=args.batch_size, n_epochs=args.n_epochs, snapshot=snapshot, iter_size=args.iter_size)
return criterion #%% if __name__ == '__main__': sys.stdout = logger.Logger('./log_GAN_ep2.txt') train_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TRAIN.idx_path, transform=dataset.train_transform(), img_loader=dataset.val_loader, pose_loader=dataset.pose_loader) train_loader = Data.DataLoader(train_data, batch_size=cfg.TRAIN.BATCH_SIZE, shuffle=True, num_workers=cfg.TRAIN.NUM_WORKERS, drop_last=True) val_data = dataset.Market_DataLoader(imgs_path=cfg.TRAIN.imgs_path, pose_path=cfg.TRAIN.pose_path, idx_path=cfg.TEST.idx_path, transform=dataset.val_transform(), img_loader=dataset.val_loader, pose_loader=dataset.pose_loader) val_loader = Data.DataLoader(val_data, batch_size=cfg.TEST.BATCH_SIZE, shuffle=False, num_workers=cfg.TRAIN.NUM_WORKERS) train_file = [train_data, train_loader] val_file = [val_data, val_loader] # train_file, val_file = load_data() nets = load_network() optimizers, schedulers, summary = Optimizer(nets) criterion = loss_func() # train(train_file, val_file, nets, optimizers, schedulers, summary, criterion)
loss = loss = LossLovasz() validation = validation_binary scheduler = ReduceLROnPlateau(optimizer, verbose=True, min_lr=1e-7, factor=0.5, patience=5) output_dir = Path('tmp') output_dir.mkdir(exist_ok=True, parents=True) train_ids, val_ids = dataset.get_split(fold) train_loader = DataLoader(dataset=TGSDataset( train_ids, num_channels=3, transform=dataset.val_transform(), mode='train'), shuffle=True, num_workers=4, batch_size=24, sampler=None, pin_memory=torch.cuda.is_available()) val_loader = DataLoader(dataset=TGSDataset( val_ids, num_channels=3, transform=dataset.val_transform(), mode='train'), shuffle=False, num_workers=4, batch_size=1, sampler=None,